Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ralph A. Stearns is active.

Publication


Featured researches published by Ralph A. Stearns.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A role for the melanocortin 4 receptor in sexual function

Lex H.T. Van der Ploeg; William J. Martin; Andrew D. Howard; Ravi P. Nargund; Christopher P. Austin; Xiao-Ming Guan; Jennifer E. Drisko; Iyassu K. Sebhat; Arthur A. Patchett; David J. Figueroa; Anthony G. DiLella; Brett Connolly; David H. Weinberg; Carina P. Tan; Oksana C. Palyha; Sheng-Shung Pong; Tanya MacNeil; Charles Rosenblum; Aurawan Vongs; Rui Tang; Hong Yu; Andreas Sailer; Tung Ming Fong; Cathy R.-R.C. Huang; Michael R. Tota; Ray Chang; Ralph A. Stearns; Constantin Tamvakopoulos; George J. Christ; Deborah L. Drazen

By using a combination of genetic, pharmacological, and anatomical approaches, we show that the melanocortin 4 receptor (MC4R), implicated in the control of food intake and energy expenditure, also modulates erectile function and sexual behavior. Evidence supporting this notion is based on several findings: (i) a highly selective non-peptide MC4R agonist augments erectile activity initiated by electrical stimulation of the cavernous nerve in wild-type but not Mc4r-null mice; (ii) copulatory behavior is enhanced by administration of a selective MC4R agonist and is diminished in mice lacking Mc4r; (iii) reverse transcription (RT)-PCR and non-PCR based methods demonstrate MC4R expression in rat and human penis, and rat spinal cord, hypothalamus, brainstem, pelvic ganglion (major autonomic relay center to the penis), but not in rat primary corpus smooth muscle cavernosum cells; and (iv) in situ hybridization of glans tissue from the human and rat penis reveal MC4R expression in nerve fibers and mechanoreceptors in the glans of the penis. Collectively, these data implicate the MC4R in the modulation of penile erectile function and provide evidence that MC4R-mediated proerectile responses may be activated through neuronal circuitry in spinal cord erectile centers and somatosensory afferent nerve terminals of the penis. Our results provide a basis for the existence of MC4R-controlled neuronal pathways that control sexual function.


Journal of Pharmacology and Experimental Therapeutics | 2002

Extrapolation of Diclofenac Clearance from in Vitro Microsomal Metabolism Data: Role of Acyl Glucuronidation and Sequential Oxidative Metabolism of the Acyl Glucuronide

Sanjeev Kumar; Koppara Samuel; Ramaswamy Subramanian; Matthew P. Braun; Ralph A. Stearns; Shuet Hing L Chiu; David C. Evans; Thomas A. Baillie

Diclofenac is eliminated predominantly (∼50%) as its 4′-hydroxylated metabolite in humans, whereas the acyl glucuronide (AG) pathway appears more important in rats (∼50%) and dogs (>80–90%). However, previous studies of diclofenac oxidative metabolism in human liver microsomes (HLMs) have yielded pronounced underprediction of human in vivo clearance. We determined the relative quantitative importance of 4′-hydroxy and AG pathways of diclofenac metabolism in rat, dog, and human liver microsomes. Microsomal intrinsic clearance values (CLint =V max/K m) were determined and used to extrapolate the in vivo blood clearance of diclofenac in these species. Clearance of diclofenac was accurately predicted from microsomal data only when both the AG and the 4′-hydroxy pathways were considered. However, the fact that the AG pathway in HLMs accounted for ∼75% of the estimated hepatic CLint of diclofenac is apparently inconsistent with the 4′-hydroxy diclofenac excretion data in humans. Interestingly, upon incubation with HLMs, significant oxidative metabolism of diclofenac AG, directly to 4′-hydroxy diclofenac AG, was observed. The estimated hepatic CLint of this pathway suggested that a significant fraction of the intrahepatically formed diclofenac AG may be converted to its 4′-hydroxy derivative in vivo. Further experiments indicated that this novel oxidative reaction was catalyzed by CYP2C8, as opposed to CYP2C9-catalyzed 4′-hydroxylation of diclofenac. These findings may have general implications in the use of total (free + conjugated) oxidative metabolite excretion for determining primary routes of drug clearance and may question the utility of diclofenac as a probe for phenotyping human CYP2C9 activity in vivo via measurement of its pharmacokinetics and total 4′-hydroxy diclofenac urinary excretion.


Chemico-Biological Interactions | 1995

Mechanism of bioactivation and covalent binding of 2,4,6-trinitrotoluene

Kwan H. Leung; Ming Yao; Ralph A. Stearns; Shuet-Hing Lee Chiu

Studies were undertaken to investigate the mechanism of bioactivation and covalent binding of TNT. Incubation of [14C]TNT with rat liver microsomes in the presence of an NADPH generating system resulted in metabolism and covalent binding to microsomal proteins. Time-dependence studies showed that TNT was rapidly reduced to yield 4-hydroxylamino-2,6-dinitrotoluene (4HA), 4-amino-2,6-dinitrotoluene (4A) and 2-amino-4,6-dinitrotoluene (2A) as intermediates which were further metabolized to form 2,4-diamino-6-nitrotoluene (2,4DA) and 2,6-diamino-4-nitrotoluene (2,6DA). In contrast to the rapid disappearance of TNT, formation of covalent protein adducts increased with time, suggesting that the reactive intermediate was likely to be formed not directly from TNT but from proximal intermediates such as 4HA. The hypothesis that 4HA was more readily converted to the reactive intermediate than TNT was further supported by the increased levels of covalent adduct formation when [14C]4HA was incubated directly with liver microsomes. Covalent binding of TNT and 4HA was dependent on oxygen concentration. Higher levels of covalent adducts were formed when TNT was incubated aerobically (up to 50% oxygen concentration) than under anaerobic conditions. Covalent binding of [14C]4HA also increased with increasing oxygen concentrations. These results suggest that the reactive intermediate is likely to be an oxidized metabolite of 4HA, e.g. 4-nitroso-2,6-dinitrotoluene. Compounds containing a free sulfhydryl group (cysteine, N-acetylcysteine, GSH or 3,4-dichlorobenzenethiol) decreased the amount of covalent binding to various degrees, suggesting the involvement of the sulfhydryl group in adduct formation with TNT following bioactivation. Metabolic activation of TNT by liver microsomes required NADPH but not NADH as the cofactor. Incubation of [14C]TNT with purified rat liver NADPH cytochrome P450 reductase under either aerobic or anaerobic conditions yielded exclusively 4HA. In contrast, 2A and 4A were formed following incubation of TNT with the reconstituted system containing cytochrome P450, NADPH cytochrome P450, reductase and dilauroyl phosphatidylcholine. These observations suggest that the initial reduction of the nitro group can be catalyzed by NADPH cytochrome P450 reductase alone but cytochrome P450 is needed in the reduction of the hydroxylamine to the amine.


Cell Metabolism | 2010

Regulation of Energy Homeostasis by Bombesin Receptor Subtype-3: Selective Receptor Agonists for the Treatment of Obesity

Xiao-Ming Guan; Howard Y. Chen; Peter H. Dobbelaar; Yan Dong; Tung M. Fong; Karen Gagen; Judith N. Gorski; Shuwen He; Andrew D. Howard; Tianying Jian; Michael Jiang; Yanqing Kan; Theresa M. Kelly; Jennifer R. Kosinski; Linus S. Lin; Jian Liu; Donald J. Marsh; Joseph M. Metzger; Randy R. Miller; Ravi P. Nargund; Oksana C. Palyha; Lauren P. Shearman; Zhu Shen; Ralph A. Stearns; Alison M. Strack; Sloan Stribling; Yui Sing Tang; Sheng-Ping Wang; Amanda White; Hong Yu

Bombesin receptor subtype 3 (BRS-3) is a G protein coupled receptor whose natural ligand is unknown. We developed potent, selective agonist (Bag-1, Bag-2) and antagonist (Bantag-1) ligands to explore BRS-3 function. BRS-3-binding sites were identified in the hypothalamus, caudal brainstem, and several midbrain nuclei that harbor monoaminergic cell bodies. Antagonist administration increased food intake and body weight, whereas agonists increased metabolic rate and reduced food intake and body weight. Prolonged high levels of receptor occupancy increased weight loss, suggesting a lack of tachyphylaxis. BRS-3 agonist effectiveness was absent in Brs3(-/Y) (BRS-3 null) mice but was maintained in Npy(-/-)Agrp(-/-), Mc4r(-/-), Cnr1(-/-), and Lepr(db/db) mice. In addition, Brs3(-/Y) mice lost weight upon treatment with either a MC4R agonist or a CB1R inverse agonist. These results demonstrate that BRS-3 has a role in energy homeostasis that complements several well-known pathways and that BRS-3 agonists represent a potential approach to the treatment of obesity.


Bioorganic & Medicinal Chemistry Letters | 2001

The discovery of sulfonylated dipeptides as Potent VLA-4 antagonists

William K. Hagmann; Philippe L. Durette; Thomas J. Lanza; Nancy J. Kevin; Stephen E. de Laszlo; Ihor E. Kopka; David N. Young; Plato A. Magriotis; Bing Li; Linus S. Lin; Ginger X. Yang; Theodore M. Kamenecka; Linda L. Chang; Jonathan E. Wilson; Malcolm Maccoss; Sander G. Mills; Gail Van Riper; Ermengilda McCauley; Linda A. Egger; Usha Kidambi; Kathryn A. Lyons; Stella H. Vincent; Ralph A. Stearns; Adria Colletti; Johannes Teffera; Sharon Tong; Judy Fenyk-Melody; Karen Owens; Dorothy Levorse; Philip Kim

Directed screening of a carboxylic acid-containing combinatorial library led to the discovery of potent inhibitors of the integrin VLA-4. Subsequent optimization by solid-phase synthesis afforded a series of sulfonylated dipeptide inhibitors with structural components that when combined in a single hybrid molecule gave a sub-nanomolar inhibitor as a lead for medicinal chemistry. Preliminary metabolic studies led to the discovery of substituted biphenyl derivatives with low picomolar activities. SAR and pharmacokinetic characterization of this series are presented.


Bioorganic & Medicinal Chemistry Letters | 1999

L-770,644 : A potent and selective human β3 adrenergic receptor agonist with improved oral bioavailability

Thomas L. Shih; Mari R. Candelore; Margaret A. Cascieri; Shuet-Hing Lee Chiu; Lawrence F. Colwell; Liping Deng; William P. Feeney; Michael J. Forrest; Gary J. Hom; D. Euan MacIntyre; Randall R. Miller; Ralph A. Stearns; Catherine D. Strader; Laurie Tota; Matthew J. Wyvratt; Michael H. Fisher; Ann E. Weber

L-770,644 (9c) is a potent and selective agonist of the human beta3 adrenergic receptor (EC50 = 13 nM). It shows good oral bioavailability in both dogs and rats (%F = 27), and is a full agonist for glycerolemia in the rhesus monkey (ED50 = 0.21 mg/kg). Based on its desirable in vitro and in vivo properties, L-770,644 was chosen for further preclinical evaluation.


Drug Metabolism and Disposition | 2007

Disposition of the dipeptidyl peptidase 4 inhibitor sitagliptin in rats and dogs.

Maria Beconi; James R. Reed; Yohannes Teffera; Yuan Qing Xia; Christopher J. Kochansky; David Q. Liu; Shiyao Xu; Charles S. Elmore; Suzanne L. Ciccotto; Donald F. Hora; Ralph A. Stearns; Stella H. Vincent

The pharmacokinetics, metabolism, and excretion of sitagliptin [MK-0431; (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine], a potent dipeptidyl peptidase 4 inhibitor, were evaluated in male Sprague-Dawley rats and beagle dogs. The plasma clearance and volume of distribution of sitagliptin were higher in rats (40–48 ml/min/kg, 7–9 l/kg) than in dogs (∼9 ml/min/kg, ∼3 l/kg), and its half-life was shorter in rats, ∼2 h compared with ∼4 h in dogs. Sitagliptin was absorbed rapidly after oral administration of a solution of the phosphate salt. The absolute oral bioavailability was high, and the pharmacokinetics were fairly dose-proportional. After administration of [14C]sitagliptin, parent drug was the major radioactive component in rat and dog plasma, urine, bile, and feces. Sitagliptin was eliminated primarily by renal excretion of parent drug; biliary excretion was an important pathway in rats, whereas metabolism was minimal in both species in vitro and in vivo. Approximately 10 to 16% of the radiolabeled dose was recovered in the rat and dog excreta as phase I and II metabolites, which were formed by N-sulfation, N-carbamoyl glucuronidation, hydroxylation of the triazolopiperazine ring, and oxidative desaturation of the piperazine ring followed by cyclization via the primary amine. The renal clearance of unbound drug in rats, 32 to 39 ml/min/kg, far exceeded the glomerular filtration rate, indicative of active renal elimination of parent drug.


Drug Metabolism and Disposition | 2005

Evidence for the bioactivation of zomepirac and tolmetin by an oxidative pathway. Identification of glutathione adducts in vitro in human liver microsomes and in vivo in rats

Qing Chen; George A. Doss; Elaine C. Tung; Wensheng Liu; Yui S. Tang; Matthew P. Braun; Varsha Didolkar; John R. Strauss; Regina W. Wang; Ralph A. Stearns; David C. Evans; Thomas A. Baillie; Wei Tang

Although zomepirac (ZP) and tolmetin (TM) induce anaphylactic reactions and form reactive acyl glucuronides, a direct link between the two events remains obscure. We report herein that, in addition to acyl glucuronidation, both drugs are subject to oxidative bioactivation. Following incubations of ZP with human liver microsomes fortified with NADPH and glutathione (GSH), a metabolite with an MH+ ion at m/z 597 was detected by LC/MS/MS. On the basis of collision-induced dissociation and NMR evidence, the structure of this metabolite was determined to be 5-[4′-chlorobenzoyl]-1,4-dimethyl-3-glutathionylpyrrole-2-acetic acid (ZP-SG), suggesting that the pyrrole moiety of ZP had undergone oxidation to an epoxide intermediate, followed by addition of GSH and loss of the elements of H2O to yield the observed conjugate. The oxidative bioactivation of ZP most likely is catalyzed by cytochrome P450 (P450) 3A4, since the formation of ZP-SG was reduced to ∼10% of control values following pretreatment of human liver microsomes with ketoconazole or with an inhibitory anti-P450 3A4 IgG. A similar GSH adduct, namely 5-[4′-methylbenzoyl]-1-methyl-3-glutathionylpyrrole-2-acetic acid (TM-SG), was identified when TM was incubated with human liver microsomal preparations. The relevance of these in vitro findings to the in vivo situation was established through the detection of the same thiol adducts in rats treated with ZP and TM, respectively. Taken together, these data suggest that, in addition to the formation of acyl glucuronides, oxidative metabolism of ZP and TM affords reactive species that may haptenize proteins and thereby contribute to the drug-mediated anaphylactic reactions.


Bioorganic & Medicinal Chemistry Letters | 1999

Human β3 adrenergic receptor agonists containing cyclic ureidobenzenesulfonamides

Emma R. Parmee; Elizabeth M. Naylor; Leroy Perkins; Vincent J. Colandrea; Hyun O. Ok; Mari R. Candelore; Margaret A. Cascieri; Liping Deng; William P. Feeney; Michael J. Forrest; Gary J. Hom; D. Euan MacIntyre; Randall R. Miller; Ralph A. Stearns; Catherine D. Strader; Laurie Tota; Matthew J. Wyvratt; Michael H. Fisher; Ann E. Weber

Human beta3 adrenergic receptor agonists containing 5-membered ring ureas were shown to be potent partial agonists with excellent selectivity over beta1 and beta2 binding. L-760,087 (4a) and L-764,646 (5a) (beta3 EC50 = 18 and 14 nM, respectively) stimulate lipolysis in rhesus monkeys (ED50 = 0.2 and 0.1 mg/kg, respectively) with minimal effects on heart rate. Oral absorption in dogs is improved over other urea analogs.


Chemico-Biological Interactions | 1992

In vivo covalent binding of [14C]trinitrotoluene to proteins in the rat

Yu-Ying Liu; Anthony Y.H. Lu; Ralph A. Stearns; Shuet-Hing Lee Chiu

When a single dose of [14C]trinitrotoluene was administered intraperitoneally (i.p.) to rats at 1, 10 or 50 mg/kg of body weight, covalently bound radioactivity was detected in globin, plasma proteins and proteins in the liver and kidney. The extent of covalent binding was dose dependent and was highest in plasma and renal proteins at all times up to 4 h after dosing. Covalent adduct levels in globin, however, decline slower than others. At a dose of 50 mg/kg of body weight, globin covalent adduct levels peaked at 1 h after dosing at 182 pmol/mg protein and subsequently decreased to approximately 50 pmol/mg protein between days 1 and 8. Of the covalent adduct levels in liver and kidney, those in the 10,000 x g and microsomal fractions were found to be higher than that in the cytosolic fraction. Radioactivity covalently bound to globin and the hepatic proteins was susceptible to dilute acid hydrolysis from which 2-amino-4,6-dinitrotoluene (2A) and 4-amino 2,6-dinitrotoluene (4A) were the major products recovered by solvent extraction. Upon acetylation, the hydrolysate gave rise to derivatives identified as the acetates of 2A and 4A on the basis of mass spectrometry and HPLC cochromatography with authentic samples. Four hours after an i.p. dose of [14C]TNT at 50 mg/kg of body weight about 0.4% of the dose was found as bound adducts to hemoglobin, of which approximately 48% was recovered as solvent extractable radioactivity after acid hydrolysis. About 2% of the radioactive dose was in the liver, of which approximately 30% was covalently bound to hepatic proteins, and approximately 49% of that was convertible to solvent extractable radioactivity upon acid hydrolysis. In vitro incubation of [14C]TNT with blood showed that there was a linear increase of covalent adducts in globin during the first 2 h of incubation; the concentration of covalent adducts was slightly higher than that with plasma proteins. The major compounds recovered from the hydrolysate of the globin adducts were also 2A and 4A as obtained from globin in the in vivo studies. On the basis of the in vitro and in vivo study results, we have confirmed the formation of protein adducts following a single i.p. administration of [14C]TNT at 1, 10 or 50 mg/kg of body weight to the rat or by in vitro incubation with blood.(ABSTRACT TRUNCATED AT 400 WORDS)

Collaboration


Dive into the Ralph A. Stearns's collaboration.

Researchain Logo
Decentralizing Knowledge