Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George A. Garcia is active.

Publication


Featured researches published by George A. Garcia.


Tuberculosis | 2010

Rifamycins - Obstacles and opportunities

Paul A. Aristoff; George A. Garcia; Paul D. Kirchhoff; H. D. Hollis Showalter

With nearly one-third of the global population infected by Mycobacterium tuberculosis, TB remains a major cause of death (1.7 million in 2006). TB is particularly severe in parts of Asia and Africa where it is often present in AIDS patients. Difficulties in treatment are exacerbated by the 6-9 month treatment times and numerous side effects. There is significant concern about the multi-drug-resistant (MDR) strains of TB (0.5 million MDR-TB cases worldwide in 2006). The rifamycins, long considered a mainstay of TB treatment, were a tremendous breakthrough when they were developed in the 1960s. While the rifamycins display many admirable qualities, they still have a number of shortfalls including: rapid selection of resistant mutants, hepatotoxicity, a flu-like syndrome (especially at higher doses), potent induction of cytochromes P450 (CYP) and inhibition of hepatic transporters. This review of the state-of-the-art regarding rifamycins suggests that it is quite possible to devise improved rifamycin analogs. Studies showing the potential of shortening the duration of treatment if higher doses could be tolerated, also suggest that more potent (or less toxic) rifamycin analogs might accomplish the same end. The improved activity against rifampin-resistant strains by some analogs promises that further work in this area, especially if the information from co-crystal structures with RNA polymerase is applied, should lead to even better analogs. The extensive drug-drug interactions seen with rifampin have already been somewhat ameliorated with rifabutin and rifalazil, and the use of a CYP-induction screening assay should serve to efficiently identify even better analogs. The toxicity due to the flu-like syndrome is an issue that needs effective resolution, particularly for analogs in the rifalazil class. It would be of interest to profile rifalazil and analogs in relation to rifampin, rifapentine, and rifabutin in a variety of screens, particularly those that might relate to hypersensitivity or immunomodulatory processes.


International Journal of Pharmaceutics | 2003

Enzyme-mediated precipitation of parent drugs from their phosphate prodrugs.

Tycho Heimbach; Doo Man Oh; Lilian Y. Li; Naír Rodríguez-Hornedo; George A. Garcia

Many oral phosphate prodrugs have failed to improve the rate or extent of absorption compared to their insoluble parent drugs. Rapid parent drug generation via intestinal alkaline phosphatase can result in supersaturated solutions, leading to parent drug precipitation. The purpose was to (1) investigate whether parent drugs can precipitate from prodrug solutions in presence of alkaline phosphatase; (2) determine whether induction times are influenced by (a) dephosphorylation rate, (b) parent drug supersaturation level, and (c) parent drug solubility. Induction times were determined from increases in optical densities after enzyme addition to prodrug solutions of TAT-59, fosphenytoin and estramustine phosphate. Apparent supersaturation ratios (sigma) were calculated from parent drug solubility at intestinal pH. Precipitation could be generated for all three prodrugs. Induction times decreased with increased enzyme activity and supersaturation level and were within gastrointestinal residence times for TAT-59 concentration>/=21microM (sigma>/=210). Induction times for fosphenytoin were less than the GI residence time (199min) for concentrations of approximately 352 microM (sigma=4.0). At approximately 475 microM (sigma=5.3) the induction times were less than 90min. For estramustine-phosphate, no precipitation was observed within GI residence times. Enzyme-mediated precipitation will depend on apparent supersaturation ratios, parent drug dose, solubility and solubilization by the prodrug.


Nucleic Acids Research | 2007

Site-specific modification of Shigella flexneri virF mRNA by tRNA-guanine transglycosylase in vitro

Julie K. Hurt; Süreyya Ölgen; George A. Garcia

Shigella flexneri is an enteropathogen responsible for severe dysentery in humans. VirF is a key transcriptional regulator that activates the expression of the downstream virulence factors required for cellular invasion and cell-to-cell spread of this pathogen. There are several environmental factors that induce the translation of VirF including temperature, pH, osmolarity and post-transcriptional RNA modification. Durand and colleagues (vacC, a virulence-associated chromosomal locus of Shigella flexneri, is homologous to tgt, a gene encoding tRNA-guanine transglycosylase of Escherichia coli K-12. J. Bacteriol., 176, 4627–4634) have demonstrated a correlation between VirF and tRNA-guanine transglycosylase (TGT), which catalyzes the exchange of the hypermodified base queuine for the guanine in the wobble position of certain tRNAs. They characterized tgt- mutant S. flexneri strains in which the translation of VirF is markedly reduced and the bacteria are unable to invade host cells. Although the function of TGT is to modify tRNA, we report that the virF mRNA is recognized by the Escherichia coli TGT (99% identity to the S. flexneri TGT) in vitro. Further, we show that this recognition results in the site-specific modification of a single base in the virF mRNA. In the context of previous reports that small molecule binding motifs (‘riboswitches’) in mRNAs modulate mRNA conformation and translation, our observations suggest that TGT may modulate the translation of VirF by base modification of the VirF encoding mRNA.


Bioorganic Chemistry | 2003

tRNA–guanine transglycosylase from E. coli: a ping-pong kinetic mechanism is consistent with nucleophilic catalysis

Dee Anne M. Goodenough-Lashua; George A. Garcia

tRNA-guanine transglycosylase (TGT) is a key enzyme in the post-transcriptional modification of certain tRNAs with the pyrrolopyrimidine base queuine. TGT is required for pathogenicity in Shigella flexneri, a human pathogen, and therefore is potentially a novel antibacterial target. Previous work has indicated that the TGT reaction proceeds through a covalent enzyme-tRNA complex [Biochemistry 40 (2001) 14123]. To further substantiate this mechanism, the determination of the kinetic mechanism for the TGT reaction was undertaken. Computational and graphical analyses of initial velocity data are most consistent with a ping-pong kinetic mechanism. The modes of inhibition of 7-methylguanine with respect to both guanine (competitive) and tRNA (uncompetitive) indicate that tRNA binds first to the enzyme. This kinetic mechanism is consistent with the covalent intermediate chemical mechanism and with our earlier study of a mechanism-based inhibitor [7-fluoromethyl-7-deazaguanine, Biochemistry 34 (1995) 15539] in which TGT inactivation was dependent upon the presence of tRNA.


RNA | 2010

Characterization of the human tRNA-guanine transglycosylase: Confirmation of the heterodimeric subunit structure

Yi Chen Chen; Vincent P. Kelly; Stefanie V. Stachura; George A. Garcia

The eukaryotic tRNA-guanine transglycosylase (TGT) has been reported to exist as a heterodimer, in contrast to the homodimeric eubacterial TGT. While ubiquitin-specific protease 14 (USP14) has been proposed to act as a regulatory subunit of the eukaryotic TGT, the mouse TGT has recently been shown to be a queuine tRNA-ribosyltransferase 1 (QTRT1, eubacterial TGT homolog).queuine tRNA-ribosyltransferase domain-containing 1 (QTRTD1) heterodimer. We find that human QTRTD1 (hQTRTD1) co-purifies with polyhistidine-tagged human QTRT1 (ht-hQTRT1) via Ni(2+) affinity chromatography. Cross-linking experiments, mass spectrometry, and size exclusion chromatography results are consistent with the two proteins existing as a heterodimer. We have not been able to observe co-purification and/or association between hQTRT1 and USP14 when co-expressed in Escherichia coli. More importantly, under our experimental conditions, the transglycosylase activity of hQTRT1 is only observed when hQTRT1 and hQTRTD1 have been co-expressed and co-purified. Kinetic characterization of the human TGT (hQTRT1.hQTRTD1) using human tRNA(Tyr) and guanine shows catalytic efficiency (k(cat)/K(M)) similar to that of the E. coli TGT. Furthermore, site-directed mutagenesis confirms that the hQTRT1 subunit is responsible for the transglycosylase activity. Taken together, these results indicate that the human TGT is composed of a catalytic subunit, hQTRT1, and hQTRTD1, not USP14. hQTRTD1 has been implicated as the salvage enzyme that generates free queuine from QMP. Work is ongoing in our laboratory to confirm this activity.


Biochimie | 1994

tRNA-guanine transglycosylase from Escherichia coli: Recognition of dimeric, unmodified tRNATyr

Alan W. Curnow; George A. Garcia

In order to probe the interaction between tRNA and the tRNA hypermodifying enzyme, tRNA-guanine transglycosylase (TGT) from Escherichia coli, we have undertaken the generation of E coli tRNA(Tyr) and analogues. During efforts to adapt currently available in vitro transcription techniques we encountered difficulties attributable to dimerization of the tRNA products. E coli tRNA(Tyr) has previously been characterized for its ability to form a dimer in solutions of suitable salt concentrations at appropriate temperatures (Yang SK, Söll DG, Crothers DM (1972) Biochemistry 11, 2311-2320; Rordorff BF, Kearns DR (1976) Biochemistry 15, 3320-3330). We have applied similar techniques to our unmodified analogue of E coli tRNA(Tyr) and produced both monomeric and dimeric forms of E coli tRNA(Tyr). In this report we find that the dimer does serve as a substrate for modification by TGT. While both the conformers are equal in terms of Vmax (within experimental error) a 2.5-fold increase in KM occurs when going from monomer to dimer. This suggests that TGT preferentially binds the monomer but once either conformer is bound will catalyze the modification reaction equally well. We have also compared the results for the two conformers to our previous data of an RNA minihelix corresponding to the anticodon arm of E coli tRNA(Tyr). Here we find that our earlier conclusion, that the recognition elements for TGT are localized within the anticodon arm of cognate tRNAs, is supported.


RNA | 2000

tRNA-guanine transglycosylase from Escherichia coli: recognition of noncognate-cognate chimeric tRNA and discovery of a novel recognition site within the TpsiC arm of tRNA(Phe).

Fan-Lu Kung; Susanne T. Nonekowski; George A. Garcia

tRNA-guanine transglycosylase (TGT) is a key enzyme involved in the posttranscriptional modification of tRNA across the three kingdoms of life. In eukaryotes and eubacteria, TGT is involved in the introduction of queuine into the anticodon of the cognate tRNAs. In archaebacteria, TGT is responsible for the introduction of archaeosine into the D-loop of the appropriate tRNAs. The tRNA recognition patterns for the eubacterial (Escherichia coli) TGT have been studied. These studies are all consistent with a restricted recognition motif involving a U-G-U sequence in a seven-base loop at the end of a helix. While attempting to investigate the potential of negative recognition elements in noncognate tRNAs via the use of chimeric tRNAs, we have discovered a second recognition site for the E. coli TGT in the TpsiC arm of in vitro-transcribed yeast tRNA(Phe). Kinetic analyses of synthetic mutant oligoribonucleotides corresponding to the TpsiC arm of the yeast tRNA(Phe) indicate that the specific site of TGT action is G53 (within a U-G-U sequence at the transition of the TpsiC stem into the loop). Posttranscriptional base modifications in tRNA(Phe) block recognition by TGT, most likely due to a stabilization of the tRNA structure such that G53 is inaccessible to TGT. These results demonstrate that TGT can recognize the U-G-U sequence within a structural context that is different than the canonical U-G-U in the anticodon loop of tRNA(Asp). Although it is unclear if this second recognition site is physiologically relevant, this does suggest that other RNA species could serve as substrates for TGT in vivo.


Nucleic Acids Research | 2011

Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases

Yi Chen Chen; Allen F. Brooks; DeeAnne M. Goodenough-Lashua; H. D. Hollis Showalter; George A. Garcia

The enzyme tRNA-guanine transglycosylase (TGT) is involved in the queuosine modification of tRNAs in eukarya and eubacteria and in the archaeosine modification of tRNAs in archaea. However, the different classes of TGTs utilize different heterocyclic substrates (and tRNA in the case of archaea). Based on the X-ray structural analyses, an earlier study [Stengl et al. (2005) Mechanism and substrate specificity of tRNA-guanine transglycosylases (TGTs): tRNA-modifying enzymes from the three different kingdoms of life share a common catalytic mechanism. Chembiochem, 6, 1926–1939] has made a compelling case for the divergent evolution of the eubacterial and archaeal TGTs. The X-ray structure of the eukaryal class of TGTs is not known. We performed sequence homology and phylogenetic analyses, and carried out enzyme kinetics studies with the wild-type and mutant TGTs from Escherichia coli and human using various heterocyclic substrates that we synthesized. Observations with the Cys145Val (E. coli) and the corresponding Val161Cys (human) TGTs are consistent with the idea that the Cys145 evolved in eubacterial TGTs to recognize preQ1 but not queuine, whereas the eukaryal equivalent, Val161, evolved for increased recognition of queuine and a concomitantly decreased recognition of preQ1. Both the phylogenetic and kinetic analyses support the conclusion that all TGTs have divergently evolved to specifically recognize their cognate heterocyclic substrates.


FEBS Letters | 1999

Mutagenesis and crystallographic studies of Zymomonas mobilis tRNA-guanine transglycosylase to elucidate the role of serine 103 for enzymatic activity

Ulrich Grädler; Ralf Ficner; George A. Garcia; Milton T. Stubbs; Gerhard Klebe; Klaus Reuter

The tRNA modifying enzyme tRNA‐guanine transglycosylase (TGT) is involved in the exchange of guanine in the first position of the anticodon with preQ1 as part of the biosynthesis of the hypermodified base queuine (Q). Mutation of Ser90 to an alanine in Escherichia coli TGT leads to a dramatic reduction of enzymatic activity (Reuter, K. et al. (1994) Biochemistry 33, 7041–7046). To further clarify the role of this residue in the catalytic center, we have mutated the corresponding Ser103 of the crystallizable Zymomonas mobilis TGT into alanine. The crystal structure of a TGT(S103A)/preQ1 complex combined with biochemical data presented in this paper suggest that Ser103 is essential for substrate orientation in the TGT reaction.


Molecular Microbiology | 2017

Structural basis for rifamycin resistance of bacterial RNA polymerase by the three most clinically important RpoB mutations found in Mycobacterium tuberculosis.

Vadim Molodtsov; Nathan T. Scharf; Maxwell A. Stefan; George A. Garcia; Katsuhiko S. Murakami

Since 1967, Rifampin (RMP, a Rifamycin) has been used as a first line antibiotic treatment for tuberculosis (TB), and it remains the cornerstone of current short‐term TB treatment. Increased occurrence of Rifamycin‐resistant (RIFR) TB, ∼41% of which results from the RpoB S531L mutation in RNA polymerase (RNAP), has become a growing problem worldwide. In this study, we determined the X‐ray crystal structures of the Escherichia coli RNAPs containing the most clinically important S531L mutation and two other frequently observed RIFR mutants, RpoB D516V and RpoB H526Y. The structures reveal that the S531L mutation imparts subtle if any structural or functional impact on RNAP in the absence of RIF. However, upon RMP binding, the S531L mutant exhibits a disordering of the RIF binding interface, which effectively reduces the RMP affinity. In contrast, the H526Y mutation reshapes the RIF binding pocket, generating significant steric conflicts that essentially prevent any RIF binding. While the D516V mutant does not exhibit any such gross structural changes, certainly the electrostatic surface of the RIF binding pocket is dramatically changed, likely resulting in the decreased affinity for RIFs. Analysis of interactions of RMP with three common RIFR mutant RNAPs suggests that modifications to RMP may recover its efficacy against RIFR TB.

Collaboration


Dive into the George A. Garcia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge