Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul D. Kirchhoff is active.

Publication


Featured researches published by Paul D. Kirchhoff.


Tuberculosis | 2010

Rifamycins - Obstacles and opportunities

Paul A. Aristoff; George A. Garcia; Paul D. Kirchhoff; H. D. Hollis Showalter

With nearly one-third of the global population infected by Mycobacterium tuberculosis, TB remains a major cause of death (1.7 million in 2006). TB is particularly severe in parts of Asia and Africa where it is often present in AIDS patients. Difficulties in treatment are exacerbated by the 6-9 month treatment times and numerous side effects. There is significant concern about the multi-drug-resistant (MDR) strains of TB (0.5 million MDR-TB cases worldwide in 2006). The rifamycins, long considered a mainstay of TB treatment, were a tremendous breakthrough when they were developed in the 1960s. While the rifamycins display many admirable qualities, they still have a number of shortfalls including: rapid selection of resistant mutants, hepatotoxicity, a flu-like syndrome (especially at higher doses), potent induction of cytochromes P450 (CYP) and inhibition of hepatic transporters. This review of the state-of-the-art regarding rifamycins suggests that it is quite possible to devise improved rifamycin analogs. Studies showing the potential of shortening the duration of treatment if higher doses could be tolerated, also suggest that more potent (or less toxic) rifamycin analogs might accomplish the same end. The improved activity against rifampin-resistant strains by some analogs promises that further work in this area, especially if the information from co-crystal structures with RNA polymerase is applied, should lead to even better analogs. The extensive drug-drug interactions seen with rifampin have already been somewhat ameliorated with rifabutin and rifalazil, and the use of a CYP-induction screening assay should serve to efficiently identify even better analogs. The toxicity due to the flu-like syndrome is an issue that needs effective resolution, particularly for analogs in the rifalazil class. It would be of interest to profile rifalazil and analogs in relation to rifampin, rifapentine, and rifabutin in a variety of screens, particularly those that might relate to hypersensitivity or immunomodulatory processes.


Molecular Microbiology | 2008

Single amino acid substitutions in either YhjD or MsbA confer viability to 3‐deoxy‐d‐manno‐oct‐2‐ulosonic acid‐depleted Escherichia coli

Uwe Mamat; Timothy C. Meredith; Parag Aggarwal; Annika Kühl; Paul D. Kirchhoff; Buko Lindner; Anna Hanuszkiewicz; Jennifer K. Sun; Otto Holst; Ronald W. Woodard

The Escherichia coli K‐12 strain KPM22, defective in synthesis of 3‐deoxy‐d‐manno‐oct‐2‐ulosonic acid (Kdo), is viable with an outer membrane (OM) composed predominantly of lipid IVA, a precursor of lipopolysaccharide (LPS) biosynthesis that lacks any glycosylation. To sustain viability, the presence of a second‐site suppressor was proposed for transport of lipid IVA from the inner membrane (IM), thus relieving toxic side‐effects of lipid IVA accumulation and providing sufficient amounts of LPS precursors to support OM biogenesis. We now report the identification of an arginine to cysteine substitution at position 134 of the conserved IM protein YhjD in KPM22 that acts as a compensatory suppressor mutation of the lethal ΔKdo phenotype. Further, the yhjD400 suppressor allele renders the LPS transporter MsbA dispensable for lipid IVA transmembrane trafficking. The independent derivation of a series of non‐conditional KPM22‐like mutants from the Kdo‐dependent parent strain TCM15 revealed a second class of suppressor mutations localized to MsbA. Proline to serine substitutions at either residue 18 or 50 of MsbA relieved the Kdo growth dependence observed in the isogenic wild‐type strain. The possible impact of these suppressor mutations on structure and function are discussed by means of a computationally derived threading model of MsbA.


Journal of Lipid Research | 2012

Property-based design of a glucosylceramide synthase inhibitor that reduces glucosylceramide in the brain.

Scott D. Larsen; Michael W. Wilson; Akira Abe; Liming Shu; Christopher H. George; Paul D. Kirchhoff; H. D. Hollis Showalter; Jianming Xiang; Richard F. Keep; James A. Shayman

Synthesis inhibition is the basis for the treatment of type 1 Gaucher disease by the glucosylceramide synthase (GCS) inhibitor eliglustat tartrate. However, the extended use of eliglustat and related compounds for the treatment of glycosphingolipid storage diseases with CNS manifestations is limited by the lack of brain penetration of this drug. Property modeling around the D-threo-1-phenyl-2-decanoylamino-3-morpholino-propanol (PDMP) pharmacophore was employed in a search for compounds of comparable activity against the GCS but lacking P-glycoprotein (MDR1) recognition. Modifications of the carboxamide N-acyl group were made to lower total polar surface area and rotatable bond number. Compounds were screened for inhibition of GCS in crude enzyme and whole cell assays and for MDR1 substrate recognition. One analog, 2-(2,3-dihydro-1H-inden-2-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide (CCG-203586), was identified that inhibited GCS at low nanomolar concentrations with little to no apparent recognition by MDR1. Intraperitoneal administration of this compound to mice for 3 days resulted in a significant dose dependent decrease in brain glucosylceramide content, an effect not seen in mice dosed in parallel with eliglustat tartrate.


The Journal of Infectious Diseases | 2009

Identification of Thieno[3,2-b]Pyrrole Derivatives as Novel Small Molecule Inhibitors of Neurotropic Alphaviruses

Weiping Peng; Daniel C. Peltier; Martha J. Larsen; Paul D. Kirchhoff; Scott D. Larsen; Richard R. Neubig; David J. Miller

Neurotropic alphaviruses such as western, eastern, and Venezuelan equine encephalitis viruses cause serious and potentially fatal central nervous system infections in humans and are high-priority potential bioterrorism agents. There are currently no widely available vaccines or licensed therapies for these virulent pathogens. To identify potential novel antiviral drugs, we developed a cell-based assay with a western equine encephalitis virus replicon that expresses a luciferase reporter gene and screened a small molecule diversity library of 51,028 compounds. We identified and validated a thieno[3,2-b]pyrrole compound with a half maximal inhibitory concentration of <10 micromol/L, a selectivity index>20, and potent activity against live virus in cultured neuronal cells. Furthermore, a structure-activity relationship analysis with 20 related compounds identified several with enhanced activity profiles, including 6 with submicromolar half maximal inhibitory concentrations. In conclusion, we have identified a novel class of promising inhibitors with potent activity against virulent neurotropic alphaviruses.


Journal of Biomolecular Screening | 2011

Complementary cell-based high-throughput screens identify novel modulators of the unfolded protein response

Andrew M. Fribley; Patricia G. Cruz; Justin R. Miller; Michael U. Callaghan; Peter Cai; Neha Narula; Richard R. Neubig; H. D. Hollis Showalter; Scott D. Larsen; Paul D. Kirchhoff; Martha J. Larsen; Douglas A. Burr; Pamela J. Schultz; Renju R. Jacobs; Giselle Tamayo-Castillo; David Ron; David H. Sherman; Randal J. Kaufman

Despite advances toward understanding the prevention and treatment of many cancers, patients who suffer from oral squamous cell carcinoma (OSCC) confront a survival rate that has remained unimproved for more than 2 decades, indicating our ability to treat them pharmacologically has reached a plateau. In an ongoing effort to improve the clinical outlook for this disease, we previously reported that an essential component of the mechanism by which the proteasome inhibitor bortezomib (PS-341, Velcade) induced apoptosis in OSCC required the activation of a terminal unfolded protein response (UPR). Predicated on these studies, the authors hypothesized that high-throughput screening (HTS) of large diverse chemical libraries might identify more potent or selective small-molecule activators of the apoptotic arm of the UPR to control or kill OSCC. They have developed complementary cell-based assays using stably transfected CHO-K1 cell lines that individually assess the PERK/eIF2α/CHOP (apoptotic) or the IRE1/XBP1 (adaptive) UPR subpathways. An ˜66 K compound collection was screened at the University of Michigan Center for Chemical Genomics that included a unique library of prefractionated natural product extracts. The mycotoxin methoxycitrinin was isolated from a natural extract and found to selectively activate the CHOP-luciferase reporter at 80 µM. A series of citrinin derivatives was isolated from these extracts, including a unique congener that has not been previously described. In an effort to identify more potent compounds, the authors examined the ability of citrinin and the structurally related mycotoxins ochratoxin A and patulin to activate the UPR. Strikingly, it was found that patulin at 2.5 to 10 µM induced a terminal UPR in a panel of OSCC cells that was characterized by an increase in CHOP, GADD34, and ATF3 gene expression and XBP1 splicing. A luminescent caspase assay and the induction of several BH3-only genes indicated that patulin could induce apoptosis in OSCC cells. These data support the use of this complementary HTS strategy to identify novel modulators of UPR signaling and tumor cell death.


Journal of Biomolecular Screening | 2010

High-Throughput Screen for Escherichia coli Heat Shock Protein 70 (Hsp70/DnaK): ATPase Assay in Low Volume by Exploiting Energy Transfer

Yoshinari Miyata; Lyra Chang; Anthony Bainor; Thomas J. McQuade; Christopher P. Walczak; Yaru Zhang; Martha J. Larsen; Paul D. Kirchhoff; Jason E. Gestwicki

Members of the heat shock protein 70 (Hsp70) family of molecular chaperones are emerging as potential therapeutic targets. Their ATPase activity has classically been measured using colorimetric phosphate detection reagents, such as quinaldine red (QR). Although such assays are suitable for 96-well plate formats, they typically lose sensitivity when attempted in lower volume due to path length and meniscus effects. These limitations and Hsp70’s weak enzymatic activity have combined to create significant challenges in high-throughput screening. To overcome these difficulties, the authors have adopted an energy transfer strategy that was originally reported by Zuck et al. (Anal Biochem 2005;342:254-259). Briefly, white 384-well plates emit fluorescence when irradiated at 430 nm. In turn, this intrinsic fluorescence can be quenched by energy transfer with the QR-based chromophore. Using this more sensitive approach, the authors tested 55,400 compounds against DnaK, a prokaryotic member of the Hsp70 family. The assay performance was good (Z′ ~0.6, coefficient of variation ~8%), and at least one promising new inhibitor was identified. In secondary assays, this compound specifically blocked stimulation of DnaK by its co-chaperone, DnaJ. Thus, this simple and inexpensive adaptation of a colorimetric method might be suitable for screening against Hsp70 family members.


Journal of Biomolecular Screening | 2012

MScreen An Integrated Compound Management and High-Throughput Screening Data Storage and Analysis System

Renju T. Jacob; Martha J. Larsen; Scott D. Larsen; Paul D. Kirchhoff; David H. Sherman; Richard R. Neubig

High-throughput screening (HTS) has historically been used by the pharmaceutical industry to rapidly test hundreds of thousands of compounds to identify potential drug candidates. More recently, academic groups have used HTS to identify new chemical probes or small interfering RNA (siRNA) that can serve as experimental tools to examine the biology or physiology of novel proteins, processes, or interactions. HTS presents a significant challenge with the vast and complex nature of data generated. This report describes MScreen, a Web-based, open-source cheminformatics application for chemical library and siRNA plate management, primary HTS and dose-response data handling, structure search, and administrative functions. Each project in MScreen can be secured with passwords or shared in an open-information environment that enables collaborators to easily compare data from many screens, providing a useful means to identify compounds with desired selectivity. Unique features include compound, substance, mixture, and siRNA plate creation and formatting; automated dose-response fitting and quality control (QC); and user, target, and assay method administration. MScreen provides an effective means to facilitate HTS information handling and analysis in the academic setting so that users can efficiently view their screening data and evaluate results for follow-up.


Bioorganic & Medicinal Chemistry Letters | 2013

Optimization of novel nipecotic bis(amide) inhibitors of the Rho/MKL1/SRF transcriptional pathway as potential anti-metastasis agents

Jessica L. Bell; Andrew J. Haak; Susan M. Wade; Paul D. Kirchhoff; Richard R. Neubig; Scott D. Larsen

CCG-1423 (1) is a novel inhibitor of Rho/MKL1/SRF-mediated gene transcription that inhibits invasion of PC-3 prostate cancer cells in a Matrigel model of metastasis. We recently reported the design and synthesis of conformationally restricted analogs (e.g., 2) with improved selectivity for inhibiting invasion versus acute cytotoxicity. In this study we conducted a survey of aromatic substitution with the goal of improving physicochemical parameters (e.g., ClogP, MW) for future efficacy studies in vivo. Two new compounds were identified that attenuated cytotoxicity even further, and were fourfold more potent than 2 at inhibiting PC-3 cell migration in a scratch wound assay. One of these (8a, CCG-203971, IC50=4.2 μM) was well tolerated in mice for 5 days at 100mg/kg/day i.p., and was able to achieve plasma levels exceeding the migration IC50 for up to 3 h.


Biochemical Pharmacology | 2011

Protein cross-linking as a novel mechanism of action of a ubiquitin-activating enzyme inhibitor with anti-tumor activity.

Vaibhav Kapuria; Luke F. Peterson; H. D. Hollis Showalter; Paul D. Kirchhoff; Moshe Talpaz; Nicholas J. Donato

Ubiquitin-activating enzyme 1 (UBE1) is a critical regulator of the ubiquitination cycle and its targeted inhibition may be an appropriate therapeutic strategy as tumor cells are reported to have increased dependence on protein ubiquitination. PYR-41 is a small molecule with previously described UBE1 inhibitory activity. PYR-41 blocks ubiquitination reactions but paradoxically leads to the accumulation of high MW ubiquitinated proteins. Detailed evaluation of PYR-41 activity demonstrated that PYR-41 inhibited UBE1 activity but also had equal or greater inhibitory activity against several deubiquitinases (DUBs) in intact cells and purified USP5 in vitro. Both UBE1 and DUB inhibition were mediated through PYR-41-induced covalent protein cross-linking which paralleled the inhibition of the target proteins enzymatic activity. PYR-41 also mediated cross-linking of specific protein kinases (Bcr-Abl, Jak2) to inhibit their signaling activity. Chemical reactivity modeling provided some insight into the cross-linking potential and partial target selectivity of PYR-41. Overall, our results suggest a broader range of targets and a novel mechanism of action for this UBE1 inhibitor. In addition, since PYR-41-related compounds have demonstrated anti-tumor activity in animal studies, partially selective protein cross-linking may represent an alternate approach to affect signal transduction modules and ubiquitin cycle-regulatory proteins for cancer therapy.


Nature Chemical Biology | 2017

Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence.

Huiqing Zheng; Christopher J. Colvin; Benjamin K. Johnson; Paul D. Kirchhoff; Michael Wilson; Katriana Jorgensen-Muga; Scott D. Larsen; Robert B. Abramovitch

The Mycobacterium tuberculosis (Mtb) DosRST two-component regulatory system promotes the survival of Mtb during non-replicating persistence (NRP). NRP bacteria help drive the long course of tuberculosis therapy; therefore, chemical inhibition of DosRST may inhibit the ability of Mtb to establish persistence and thus shorten treatment. Using a DosRST-dependent fluorescent Mtb reporter strain, a whole-cell phenotypic high-throughput screen of a ∼540,000 compound small-molecule library was conducted. The screen discovered novel inhibitors of the DosRST regulon, including three compounds that were subject to follow-up studies: artemisinin, HC102A and HC103A. Under hypoxia, all three compounds inhibit Mtb-persistence-associated physiological processes, including triacylglycerol synthesis, survival and antibiotic tolerance. Artemisinin functions by disabling the heme-based DosS and DosT sensor kinases by oxidizing ferrous heme and generating heme-artemisinin adducts. In contrast, HC103A inhibits DosS and DosT autophosphorylation activity without targeting the sensor kinase heme.

Collaboration


Dive into the Paul D. Kirchhoff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Baojie Wan

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge