Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George A.M. Cross is active.

Publication


Featured researches published by George A.M. Cross.


Molecular and Biochemical Parasitology | 1999

A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei

Elizabeth Wirtz; Simone Leal; Claudia M. Ochatt; George A.M. Cross

First-generation inducible expression vectors for Trypanosoma brucei utilized a single tetracycline-responsive promoter to drive expression of an experimental gene, in tandem with a drug-resistance marker gene to select for integration (Wirtz E, Clayton CE. Science 1995; 268:1179-1183). Because drug resistance and experimental gene expression both depended upon the activity of the regulated promoter, this approach could not be used for inducible expression of toxic products. We have now developed a dual-promoter approach, for expressing highly toxic products and generating conditional gene knock-outs, using back-to-back constitutive T7 and tetracycline-responsive PARP promoters to drive expression of the selectable marker and test gene, respectively. Transformants are readily obtained with these vectors in the absence of tetracycline, in bloodstream or procyclic T. brucei cell lines co-expressing T7 RNA polymerase and Tet repressor, and consistently show tetracycline-responsive expression through a 10(3)-10(4)-fold range. Uninduced background expression of a luciferase reporter averages no more than one molecule per cell, enabling dominant-negative approaches relying upon inducible expression of toxic products. This tight regulation also permits the production of functional gene knock-outs through regulated expression of an experimental gene in a null-mutant background.


Parasitology | 1975

Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei

George A.M. Cross

Soluble glycoproteins have been purified from a series of clones of Trypanosoma brucei 427. Each clone yielded a characteristic predominant glycoprotein which induced clone-specific immunity to trypanosome infection in mice. These glycoproteins were shown by specific labelling and enzyme digestion of cells to be the major components of the trypanosome surface coat. Each glycoprotein consisted of a single polypeptide chain having an apparent molecular weight of 65 000 (as measured by SDS-polyacrylamide gel electrophoresis) and containing around 600 amino acid and 20 monosaccharide residues. Preliminary structural studies indicated large changes in amino acid sequence dispersed over a considerable length of the polypeptide chain. Proteolytic activity was demonstrated in semi-purified trypanosome extracts, providing one reason for the heterogeneity sometimes observed in surface glycoprotein antigen preparations.


Molecular and Biochemical Parasitology | 1993

Rapid isolation of DNA from trypanosomatid protozoa using a simple ‘mini-prep’ procedure

Enrique Medina-Acosta; George A.M. Cross

Although several methods for isolating genomic DNA from trypanosomatid protozoa exist, all are time-consuming and cumbersome. Faster, simpler and efficient protocols for preparation of DNA from these protozoa are needed to ease the screening of mutants and transfectants. We describe the use of a bacterial lysis method to isolate chromosomal DNA from a wide range of trypanosomatids. The method is based on the finding reported by He et al., who noticed that phenol/chloroform treatment of Escherichia coli cells in the presence of LiCl and Triton X-100 solubilizes plasmid DNA, while precipitating unwanted chromosomal DNA and denatured cellular proteins. In applying this lysis method to the isolation of episomal DNA from transfected trypanosomatids, we found that, unlike bacterial genomic DNA, chromosomal DNA of trypanosomatids was soluble in the phenol/chloroform/Triton/LiCl mixture. This observation prompted us to use the bacterial lysis method as a routine protocol for extraction of DNA from trypanosomatids.


Genes & Development | 2009

Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei

T. N. Siegel; Doeke R. Hekstra; L. E. Kemp; Luisa M. Figueiredo; Joanna E. Lowell; David Fenyö; Xianlong Wang; Scott Dewell; George A.M. Cross

Unusually for a eukaryote, genes transcribed by RNA polymerase II (pol II) in Trypanosoma brucei are arranged in polycistronic transcription units. With one exception, no pol II promoter motifs have been identified, and how transcription is initiated remains an enigma. T. brucei has four histone variants: H2AZ, H2BV, H3V, and H4V. Using chromatin immunoprecipitation (ChIP) and sequencing (ChIP-seq) to examine the genome-wide distribution of chromatin components, we show that histones H4K10ac, H2AZ, H2BV, and the bromodomain factor BDF3 are enriched up to 300-fold at probable pol II transcription start sites (TSSs). We also show that nucleosomes containing H2AZ and H2BV are less stable than canonical nucleosomes. Our analysis also identifies >60 unexpected TSS candidates and reveals the presence of long guanine runs at probable TSSs. Apparently unique to trypanosomes, additional histone variants H3V and H4V are enriched at probable pol II transcription termination sites. Our findings suggest that histone modifications and histone variants play crucial roles in transcription initiation and termination in trypanosomes and that destabilization of nucleosomes by histone variants is an evolutionarily ancient and general mechanism of transcription initiation, demonstrated in an organism in which general pol II transcription factors have been elusive.


Nucleic Acids Research | 2010

Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites

Tim Nicolai Siegel; Doeke R. Hekstra; Xuning Wang; Scott Dewell; George A.M. Cross

Transcription of protein-coding genes in trypanosomes is polycistronic and gene expression is primarily regulated by post-transcriptional mechanisms. Sequence motifs in the untranslated regions regulate mRNA trans-splicing and RNA stability, yet where UTRs begin and end is known for very few genes. We used high-throughput RNA-sequencing to determine the genome-wide steady-state mRNA levels (‘transcriptomes’) for ∼90% of the genome in two stages of the Trypanosoma brucei life cycle cultured in vitro. Almost 6% of genes were differentially expressed between the two life-cycle stages. We identified 5′ splice-acceptor sites (SAS) and polyadenylation sites (PAS) for 6959 and 5948 genes, respectively. Most genes have between one and three alternative SAS, but PAS are more dispersed. For 488 genes, SAS were identified downstream of the originally assigned initiator ATG, so a subsequent in-frame ATG presumably designates the start of the true coding sequence. In some cases, alternative SAS would give rise to mRNAs encoding proteins with different N-terminal sequences. We could identify the introns in two genes known to contain them, but found no additional genes with introns. Our study demonstrates the usefulness of the RNA-seq technology to study the transcriptional landscape of an organism whose genome has not been fully annotated.


The EMBO Journal | 2001

t-loops at trypanosome telomeres

Jorge L. Muñoz-Jordán; George A.M. Cross; Titia de Lange; Jack D. Griffith

Mammalian telomeres form large duplex loops (t‐loops) that may sequester chromosome ends by invasion of the 3′ TTAGGG overhang into the duplex TTAGGG repeat array. Here we document t‐loops in Trypanosoma brucei, a kinetoplastid protozoan with abundant telomeres due to the presence of many minichromosomes. These telomeres contained 10–20 kb duplex TTAGGG repeats and a 3′ TTAGGG overhang. Electron microscopy of psoralen/UV cross‐linked DNA revealed t‐loops in enriched telomeric restriction fragments and at the ends of isolated minichromosomes. In mammals, t‐loops are large (up to 25 kb), often comprising most of the telomere. Despite similar telomere lengths, trypanosome t‐loops were much smaller (∼1 kb), indicating that t‐loop sizes are regulated. Coating of non‐cross‐linked minichromosomes with Escherichia coli single‐strand binding protein (SSB) often revealed 3′ overhangs at both telomeres and several cross‐linked minichromosomes had t‐loops at both ends. These results suggest that t‐loops and their prerequisite 3′ tails can be formed on the products of both leading and lagging strand synthesis. We conclude that t‐loops are a conserved feature of eukaryotic telomeres.


Epigenetics & Chromatin | 2012

A unified phylogeny-based nomenclature for histone variants

Paul B. Talbert; Kami Ahmad; Geneviève Almouzni; Juan Ausió; Frédéric Berger; Prem L. Bhalla; William M. Bonner; W. Zacheus Cande; Brian P. Chadwick; Simon W. L. Chan; George A.M. Cross; Liwang Cui; Stefan Dimitrov; Detlef Doenecke; José M. Eirín-López; Martin A. Gorovsky; Sandra B. Hake; Barbara A. Hamkalo; Sarah Holec; Steven E. Jacobsen; Kinga Kamieniarz; Saadi Khochbin; Andreas G. Ladurner; David Landsman; John Latham; Benjamin Loppin; Harmit S. Malik; William F. Marzluff; John R. Pehrson; Jan Postberg

Histone variants are non-allelic protein isoforms that play key roles in diversifying chromatin structure. The known number of such variants has greatly increased in recent years, but the lack of naming conventions for them has led to a variety of naming styles, multiple synonyms and misleading homographs that obscure variant relationships and complicate database searches. We propose here a unified nomenclature for variants of all five classes of histones that uses consistent but flexible naming conventions to produce names that are informative and readily searchable. The nomenclature builds on historical usage and incorporates phylogenetic relationships, which are strong predictors of structure and function. A key feature is the consistent use of punctuation to represent phylogenetic divergence, making explicit the relationships among variant subtypes that have previously been implicit or unclear. We recommend that by default new histone variants be named with organism-specific paralog-number suffixes that lack phylogenetic implication, while letter suffixes be reserved for structurally distinct clades of variants. For clarity and searchability, we encourage the use of descriptors that are separate from the phylogeny-based variant name to indicate developmental and other properties of variants that may be independent of structure.


Parasitology | 1973

Cultivation of Trypanosoma brucei sspp. in semi-defined and defined media.

George A.M. Cross; J. C. Manning

Semi-defined and defined media for the growth of culture forms of Trypanosoma brucei sspp. have been developed by enrichment of tissue culture medium 199 with additional vitamins, amino acids, salts and other compounds. The semi-defined medium contains an acid hydrolysate of casein : in the empirically devised defined medium the casein requirement has been circumvented by inclusion of additional vitamins and amino acids. Both media are very hypertonic. Control of pH was found to be particularly critical for growth. The optimum temperature for growth in the semidefined medium was between 25 °C and 28 °C,but cells would undergo one or two division cycles at 37 °C.


PLOS ONE | 2008

Telomeric Expression Sites Are Highly Conserved in Trypanosoma brucei

Christiane Hertz-Fowler; Luisa M. Figueiredo; Michael A. Quail; Marion Becker; Andrew C Jackson; Nathalie Bason; Karen Brooks; Carol Churcher; Samah Fahkro; Ian Goodhead; Paul Trafford Heath; Magdalena Kartvelishvili; Karen Mungall; David K. Harris; Heidi Hauser; Mandy Sanders; David L. Saunders; Kathy Seeger; Sarah Sharp; Jesse E. Taylor; Danielle Walker; Brian R. White; Rosanna Young; George A.M. Cross; Gloria Rudenko; J. David Barry; Edward J. Louis; Matthew Berriman

Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.


Gene | 1982

Transcripts coding for variant surface glycoproteins of Trypanosoma brucei have a short, identical exon at their 5' end.

John C. Boothroyd; George A.M. Cross

Abstract The nucleotide sequence of the 5′ end of the mRNA for variant surface glycoprotein (VSG) 117 has been determined and compared with the sequence of the unexpressed basic copy (BC) of the VSG 117 gene. This shows the existence of an exon 35 nucleotides long at the 5′ end of the mRNA. The evidence suggests that this ‘mini-exon’ is derived from the expression site into which the VSG 117 BC is transposed during activation. The nucleotide sequence of this mini-exon is indistinguishable from that recently found for a different VSG, 118 (Van der Ploeg et al., Nucl. Acids Res. 10 (1982) 3591–3604). Analysis of the 5′ end of the mRNA for another VSG (221) whose gene is thought to be activated by a different mechanism to that of VSGs 117 and 118 indicates that the 5′- most 35 nucleotides of the VSG 221 mRNA are identical to the 117/118 mini-exon sequence. The implications of these results for the mechanism of VSG gene expression are discussed.

Collaboration


Dive into the George A.M. Cross's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piet Borst

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simone Leal

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge