Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian J. Janzen is active.

Publication


Featured researches published by Christian J. Janzen.


PLOS Biology | 2008

A Histone Methyltransferase Modulates Antigenic Variation in African Trypanosomes

Luisa M. Figueiredo; Christian J. Janzen; George A.M. Cross

To evade the host immune system, several pathogens periodically change their cell-surface epitopes. In the African trypanosomes, antigenic variation is achieved by tightly regulating the expression of a multigene family encoding a large repertoire of variant surface glycoproteins (VSGs). Immune evasion relies on two important features: exposing a single type of VSG at the cell surface and periodically and very rapidly switching the expressed VSG. Transcriptional switching between resident telomeric VSG genes does not involve DNA rearrangements, and regulation is probably epigenetic. The histone methyltransferase DOT1B is a nonessential protein that trimethylates lysine 76 of histone H3 in Trypanosoma brucei. Here we report that transcriptionally silent telomeric VSGs become partially derepressed when DOT1B is deleted, whereas nontelomeric loci are unaffected. DOT1B also is involved in the kinetics of VSG switching: in ΔDOT1B cells, the transcriptional switch is so slow that cells expressing two VSGs persist for several weeks, indicating that monoallelic transcription is compromised. We conclude that DOT1B is required to maintain strict VSG silencing and to ensure rapid transcriptional VSG switching, demonstrating that epigenetics plays an important role in regulating antigenic variation in T. brucei.


Molecular and Cellular Biology | 2000

CIITA leucine-rich repeats control nuclear localization, in vivo recruitment to the major histocompatibility complex (MHC) class II enhanceosome, and MHC class II gene transactivation.

Sandra B. Hake; Krzysztof Masternak; Claudia Kammerbauer; Christian J. Janzen; Walter Reith; Viktor Steimle

ABSTRACT The major histocompatibility complex (MHC) class II transactivator CIITA plays a pivotal role in the control of the cellular immune response through the quantitative regulation of MHC class II expression. We have analyzed a region of CIITA with similarity to leucine-rich repeats (LRRs). CIITA LRR alanine mutations abolish both the transactivation capacity of full-length CIITA and the dominant-negative phenotype of CIITA mutants with N-terminal deletions. We demonstrate direct interaction of CIITA with the MHC class II promoter binding protein RFX5 and could also detect novel interactions with RFXANK, NF-YB, and -YC. However, none of these interactions is influenced by CIITA LRR mutagenesis. On the other hand, chromatin immunoprecipitation shows that in vivo binding of CIITA to the MHC class II promoter is dependent on LRR integrity. LRR mutations lead to an impaired nuclear localization of CIITA, indicating that a major function of the CIITA LRRs is in nucleocytoplasmic translocation. There is, however, evidence that the CIITA LRRs are also involved more directly in MHC class II gene transactivation. CIITA interacts with a novel protein of 33 kDa in a manner sensitive to LRR mutagenesis. CIITA is therefore imported into the nucleus by an LRR-dependent mechanism, where it activates transcription through multiple protein-protein interactions with the MHC class II promoter binding complex.


Nature Reviews Microbiology | 2009

Epigenetic regulation in African trypanosomes: a new kid on the block

Luisa M. Figueiredo; George A.M. Cross; Christian J. Janzen

Epigenetic regulation is important in many facets of eukaryotic biology. Recent work has suggested that the basic mechanisms underlying epigenetic regulation extend to eukaryotic parasites. The identification of post-translational histone modifications and chromatin-modifying enzymes is beginning to reveal both common and novel functions for chromatin in these parasites. In this Review, we compare the role of epigenetics in African trypanosomes and humans in several biological processes. We discuss how the study of trypanosome chromatin might help us to better understand the evolution of epigenetic processes.


FEBS Letters | 2006

Unusual histone modifications in Trypanosoma brucei

Christian J. Janzen; Joseph Fernandez; Haiteng Deng; Robert L. Diaz; Sandra B. Hake; George A.M. Cross

To start to understand the role of chromatin structure in regulating transcription in trypanosomes, we analyzed covalent modifications on the four core histones of Trypanosoma brucei. We found unusually few modifications in the N‐terminal tails, which are abundantly modified in other organisms and whose sequences, but not composition, are highly divergent in trypanosomes. In contrast, the C‐terminal region of H2A appears to be hyper‐acetylated. Surprisingly, the N‐terminal alanines of H2A, H2B, and H4, were mono‐methylated, a modification that has not been described previously for histones. Possible functions and evolutionary explanations for these unusual histone modifications are discussed.


Journal of Cell Science | 2005

Histone H2AZ dimerizes with a novel variant H2B and is enriched at repetitive DNA in Trypanosoma brucei

Joanna E. Lowell; Franziska Kaiser; Christian J. Janzen; George A.M. Cross

H2AZ is a widely conserved histone variant that is implicated in protecting euchromatin from the spread of heterochromatin. H2AZ is incorporated into nucleosomes as a heterodimer with H2B, by the SWR1 ATP-dependent chromatin-remodeling complex. We have identified a homolog of H2AZ in the protozoan parasite Trypanosoma brucei, along with a novel variant of histone H2B (H2BV) that shares ∼38% sequence identity with major H2B. Both H2AZ and H2BV are essential for viability. H2AZ localizes within the nucleus in a pattern that is distinct from canonical H2A and is largely absent from sites of transcription visualized by incorporation of 5-bromo-UTP (BrUTP). H2AZ and H2BV colocalize throughout the cell cycle and exhibit nearly identical genomic distribution patterns, as assessed by chromatin immunoprecipitation. H2AZ co-immunoprecipitates with H2BV but not with histones H2B or H2A nor with the variant H3V. These data strongly suggest that H2AZ and H2BV function together within a single nucleosome, marking the first time an H2AZ has been shown to associate with a non-canonical histone H2B.


Proceedings of the National Academy of Sciences of the United States of America | 2007

An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA

Mary Anne T. Rubio; Irena Pastar; Kirk W. Gaston; Frank L. Ragone; Christian J. Janzen; George A.M. Cross; F. Nina Papavasiliou; Juan D. Alfonzo

Adenosine-to-inosine editing in the anticodon of tRNAs is essential for viability. Enzymes mediating tRNA adenosine deamination in bacteria and yeast contain cytidine deaminase-conserved motifs, suggesting an evolutionary link between the two reactions. In trypanosomatids, tRNAs undergo both cytidine-to-uridine and adenosine-to-inosine editing, but the relationship between the two reactions is unclear. Here we show that down-regulation of the Trypanosoma brucei tRNA-editing enzyme by RNAi leads to a reduction in both C-to-U and A-to-I editing of tRNA in vivo. Surprisingly, in vitro, this enzyme can mediate A-to-I editing of tRNA and C-to-U deamination of ssDNA but not both in either substrate. The ability to use both DNA and RNA provides a model for a multispecificity editing enzyme. Notably, the ability of a single enzyme to perform two different deamination reactions also suggests that this enzyme still maintains specificities that would have been found in the ancestor deaminase, providing a first line of evidence for the evolution of editing deaminases.


Molecular & Cellular Proteomics | 2013

Comparative Proteomics of Two Life Cycle Stages of Stable Isotope-labeled Trypanosoma brucei Reveals Novel Components of the Parasite's Host Adaptation Machinery

Falk Butter; Ferdinand Bucerius; Margaux Michel; Zdenka Cicova; Matthias Mann; Christian J. Janzen

Trypanosoma brucei developed a sophisticated life cycle to adapt to different host environments. Although developmental differentiation of T. brucei has been the topic of intensive research for decades, the mechanisms responsible for adaptation to different host environments are not well understood. We developed stable isotope labeling by amino acids in cell culture in trypanosomes to compare the proteomes of two different life cycle stages. Quantitative comparison of 4364 protein groups identified many proteins previously not known to be stage-specifically expressed. The identification of stage-specific proteins helps to understand how parasites adapt to different hosts and provides new insights into differences in metabolism, gene regulation, and cell architecture. A DEAD-box RNA helicase, which is highly up-regulated in the bloodstream form of this parasite and which is essential for viability and proper cell cycle progression in this stage is described as an example.


Molecular Microbiology | 2007

Acetylation of histone H4K4 is cell cycle regulated and mediated by HAT3 in Trypanosoma brucei

T. Nicolai Siegel; Taemi Kawahara; Jeffrey A. DeGrasse; Christian J. Janzen; David Horn; George A.M. Cross

Post‐translational histone modifications have been studied intensively in several eukaryotes. It has been proposed that these modifications constitute a ‘histone code’ that specifies epigenetic information for transcription regulation. With a limited number of histone‐modifying enzymes, implying less redundancy, Trypanosoma brucei represents an excellent system in which to investigate the function of individual histone modifications and histone‐modifying enzymes. In this study, we characterized the acetylation of lysine 4 of histone H4 (H4K4), the most abundant acetylation site in T. brucei histones. Because of the large sequence divergence of T. brucei histones, we generated highly specific antibodies to acetylated and unmodified H4K4. Immunofluorescence microscopy and Western blots with sorted cells revealed a strong enrichment of unmodified H4K4 in S phase and suggested a G1/G0‐specific masking of the site, owing to non‐covalently binding factors. Finally, we showed that histone acetyltransferase 3 (HAT3) is responsible for H4K4 acetylation and that treatment of cells with the protein synthesis inhibitor cycloheximide led to an almost instantaneous loss of unmodified H4K4 sites. As HAT3 is located inside the nucleus, our findings suggest that newly synthesized histone H4 with an unmodified K4 is imported rapidly into the nucleus, where it is acetylated, possibly irreversibly.


PLOS Pathogens | 2016

Quantitative Proteomics Uncovers Novel Factors Involved in Developmental Differentiation of Trypanosoma brucei

Mario Dejung; Ines Subota; Ferdinand Bucerius; Gülcin Dindar; Anja Freiwald; Markus Engstler; Michael Boshart; Falk Butter; Christian J. Janzen

Developmental differentiation is a universal biological process that allows cells to adapt to different environments to perform specific functions. African trypanosomes progress through a tightly regulated life cycle in order to survive in different host environments when they shuttle between an insect vector and a vertebrate host. Transcriptomics has been useful to gain insight into RNA changes during stage transitions; however, RNA levels are only a moderate proxy for protein abundance in trypanosomes. We quantified 4270 protein groups during stage differentiation from the mammalian-infective to the insect form and provide classification for their expression profiles during development. Our label-free quantitative proteomics study revealed previously unknown components of the differentiation machinery that are involved in essential biological processes such as signaling, posttranslational protein modifications, trafficking and nuclear transport. Furthermore, guided by our proteomic survey, we identified the cause of the previously observed differentiation impairment in the histone methyltransferase DOT1B knock-out strain as it is required for accurate karyokinesis in the first cell division during differentiation. This epigenetic regulator is likely involved in essential chromatin restructuring during developmental differentiation, which might also be important for differentiation in higher eukaryotic cells. Our proteome dataset will serve as a resource for detailed investigations of cell differentiation to shed more light on the molecular mechanisms of this process in trypanosomes and other eukaryotes.


Nucleic Acids Research | 2012

DOT1A-dependent H3K76 methylation is required for replication regulation in Trypanosoma brucei

Alwine Gassen; Doris Brechtefeld; Niklas Schandry; J. Manuel Arteaga-Salas; Lars Israel; Axel Imhof; Christian J. Janzen

Cell-cycle progression requires careful regulation to ensure accurate propagation of genetic material to the daughter cells. Although many cell-cycle regulators are evolutionarily conserved in the protozoan parasite Trypanosoma brucei, novel regulatory mechanisms seem to have evolved. Here, we analyse the function of the histone methyltransferase DOT1A during cell-cycle progression. Over-expression of DOT1A generates a population of cells with aneuploid nuclei as well as enucleated cells. Detailed analysis shows that DOT1A over-expression causes continuous replication of the nuclear DNA. In contrast, depletion of DOT1A by RNAi abolishes replication but does not prevent karyokinesis. As histone H3K76 methylation has never been associated with replication control in eukaryotes before, we have discovered a novel function of DOT1 enzymes, which might not be unique to trypanosomes.

Collaboration


Dive into the Christian J. Janzen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandra B. Hake

Center for Integrated Protein Science Munich

View shared research outputs
Top Co-Authors

Avatar

Luisa M. Figueiredo

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge