Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George Burkett is active.

Publication


Featured researches published by George Burkett.


The Journal of Nuclear Medicine | 2009

Initial Characterization of a Dedicated Breast PET/CT Scanner During Human Imaging

Spencer L. Bowen; Yibao Wu; Abhijit J. Chaudhari; Lin Fu; Nathan J. Packard; George Burkett; Kai Yang; Karen K. Lindfors; David K. Shelton; Rosalie J. Hagge; Alexander D. Borowsky; Steve R. Martinez; Jinyi Qi; John M. Boone; Simon R. Cherry; Ramsey D. Badawi

We have constructed a dedicated breast PET/CT scanner capable of high-resolution functional and anatomic imaging. Here, we present an initial characterization of scanner performance during patient imaging. Methods: The system consisted of a lutetium oxyorthosilicate–based dual–planar head PET camera (crystal size, 3 × 3 × 20 mm) and 768-slice cone-beam CT. The position of the PET heads (separation and height) could be adjusted for varying breast dimensions. For scanning, the patient lay prone on a specialized bed and inserted a single pendent breast through an aperture in the table top. Compression of the breast as used in mammography is not required. PET and CT systems rotate in the coronal plane underneath the patient sequentially to collect fully tomographic datasets. PET images were reconstructed with the fully 3-dimensional maximum a posteriori method, and CT images were reconstructed with the Feldkamp algorithm, then spatially registered and fused for display. Phantom scans were obtained to assess the registration accuracy between PET and CT images and the influence of PET electronics and activity on CT image quality. We imaged 4 women with mammographic findings highly suggestive of breast cancer (breast imaging reporting and data system, category 5) in an ongoing clinical trial. Patients were injected with 18F-FDG and imaged for 12.5 min per breast. From patient data, noise-equivalent counting rates and the singles-to-trues ratio (a surrogate for the randoms fraction) were calculated. Results: The average registration error between PET and CT images was 0.18 mm. PET electronics and activity did not significantly affect CT image quality. For the patient trial, biopsy-confirmed cancers were visualized on dedicated breast PET/CT on all patient scans, including the detection of ductal carcinoma in situ in 1 case. The singles-to-trues ratio was found to be inversely correlated with breast volume in the field of view, suggesting that larger breasts trend toward increased noise-equivalent counting rates for all other things equal. Conclusion: Scanning of the uncompressed breast with dedicated breast PET/CT can accurately visualize suspected lesions in 3 dimensions.


Physics in Medicine and Biology | 2009

PET characteristics of a dedicated breast PET/CT scanner prototype

Yibao Wu; Spencer L. Bowen; Kai Yang; Nathan J. Packard; Lin Fu; George Burkett; Jinyi Qi; John M. Boone; Simon R. Cherry; Ramsey D. Badawi

A dedicated breast PET/CT system has been constructed at our institution, with the goal of having increased spatial resolution and sensitivity compared to whole-body systems. The purpose of this work is to describe the design and the performance characteristics of the PET component of this device. Average spatial resolution of a line source in warm background using maximum a posteriori (MAP) reconstruction was 2.5 mm, while the average spatial resolution of a phantom containing point sources using filtered back projection (FBP) was 3.27 mm. A sensitivity profile was computed with a point source translated across the axial field of view (FOV) and a peak sensitivity of 1.64% was measured at the center of the FOV. The average energy resolution determined on a per-crystal basis was 25%. The characteristic dead time for the front-end electronics and data acquisition (DAQ) was determined to be 145 ns and 3.6 micros, respectively. With no activity outside the FOV, a peak noise-equivalent count rate of 18.6 kcps was achieved at 318 microCi (11.766 MBq) in a cylindrical phantom of diameter 75 mm. After the effects of exposing PET detectors to x-ray flux were evaluated and ameliorated, a combined PET/CT scan was performed. The percentage standard deviations of uniformity along axial and transaxial directions were 3.7% and 2.8%, respectively. The impact of the increased reconstructed spatial resolution compared to typical whole-body PET scanners is currently being assessed in a clinical trial.


European Journal of Nuclear Medicine and Molecular Imaging | 2010

High-resolution 18F-FDG PET with MRI for monitoring response to treatment in rheumatoid arthritis

Abhijit J. Chaudhari; Spencer L. Bowen; George Burkett; Nathan J. Packard; Felipe Godinez; Anand A. Joshi; Stanley M. Naguwa; David K. Shelton; John C. Hunter; John M. Boone; Michael H. Buonocore; Ramsey D. Badawi

Eur J Nucl Med Mol Imaging (2010) 37:1047 DOI 10.1007/s00259-009-1364-x IMAGE OF THE MONTH High-resolution 18 F-FDG PET with MRI for monitoring response to treatment in rheumatoid arthritis Abhijit J. Chaudhari & Spencer L. Bowen & George W. Burkett & Nathan J. Packard & Felipe Godinez & Anand A. Joshi & Stanley M. Naguwa & David K. Shelton & John C. Hunter & John M. Boone & Michael H. Buonocore & Ramsey D. Badawi Received: 20 November 2009 / Accepted: 10 December 2009 / Published online: 30 January 2010 # The Author(s) 2010. This article is published with open access at Springerlink.com Molecular imaging can potentially provide means for mon- itoring response to therapy in rheumatoid arthritis (RA) early in the course of disease [1].Quantitative measurements of RA disease activity made in the wrist by whole-body PET scanners, however, have inadequate accuracy because of limited spatial resolution [2]. A high-resolution PET/CT scanner for imaging extremities has been built at our insti- tution [3]. In conjunction with a clinical MRI scanner, high- resolution PET/MR images can be obtained for the wrist. The CT image is used for PET/MR image coregistration. A 57-year-old female with established RA was stable until a recent clinical flare-up in the right wrist. Clinical exami- nation revealed synovitis, swelling, and diminished range of motion. The patient also had a history of osteoarthritis (OA). An extremity 18 F-FDG PET/CT scan immediately following MRI at baseline was performed on this patient. Tumor necrosis factor alpha (TNF-α) inhibitor (etanercept) therapy was then initiated as a part of the patient’s standard of care. The patient was re-scanned 5 weeks after starting treatment. The figure shows high-resolution 18 F-FDG PET images (pseudocolor) overlaid on pre-contrast MRI images (gray This work was funded by the NIH grants UL1-RR024146, R01CA129561, R01EB002138 and the UC Davis Imaging Research Center. A. J. Chaudhari (*) : S. L. Bowen : G. W. Burkett : N. J. Packard : F. Godinez : D. K. Shelton : J. C. Hunter : J. M. Boone : M. H. Buonocore : R. D. Badawi Department of Radiology, UC Davis Medical Center, Sacramento, CA, USA e-mail: [email protected] A. A. Joshi Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA S. M. Naguwa Department of Internal Medicine, UC Davis Medical Center, Sacramento, CA, USA scale) at baseline (left column) and 5 weeks (right column). Significant reduction in PET signal (suggesting reduced inflammation) in the synovium and at sites of erosions (white arrows) is visible. The green arrow shows inflammation due to OA. Physician examination at 3 months confirmed that this patient responded positively to etanercept. This case illustrates the potential of high-resolution PET with MRI for quantitative visualization of early response to therapy in RA. Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which per- mits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. References 1. Brenner W. 18F-FDG PET in rheumatoid arthritis: there still is a long way to go. J Nucl Med. 2004;45(6):927–9. 2. Beckers C, Ribbens C, Andre B, Marcelis S, Kaye O, Mathy L, et al. Assessment of disease activity in rheumatoid arthritis with (18)F-FDG PET. J Nucl Med. 2004;45(6):956–64. 3. Bowen SL, Wu Y, Chaudhari AJ, Fu L, Packard NJ, Burkett GW, et al. Initial characterization of a dedicated breast PET/CT scanner during human imaging. J Nucl Med. 2009;50(9):1401–8.


Medical Imaging 2005: Physics of Medical Imaging | 2005

Performance assessment of a pendant-geometry CT scanner for breast cancer detection

John M. Boone; Alexander L. C. Kwan; Thomas R. Nelson; Nikula Shah; George Burkett; J. Anthony Seibert; Karen K. Lindfors; Gerhardt Roos

While mammography is the gold standard for breast cancer screening worldwide, it is widely recognized that mammography has limitations, especially in women with dense breasts. In response to the need for a more sensitive approach to breast cancer screening, a CT scanner specifically for breast imaging in the pendant geometry was designed, fabricated, and is currently in clinical evaluation. The spatial resolution and noise properties are discussed, and breast images from a normal volunteer and a patient with breast cancer demonstrate very promising breast CT image quality from a qualitative perspective.


Medical Physics | 2015

Evolution of spatial resolution in breast CT at UC Davis

Peymon Gazi; Kai Yang; George Burkett; Shadi Aminololama-Shakeri; J. Anthony Seibert; John M. Boone

PURPOSE Dedicated breast computed tomography (bCT) technology for the purpose of breast cancer screening has been a focus of research at UC Davis since the late 1990s. Previous studies have shown that improvement in spatial resolution characteristics of this modality correlates with greater microcalcification detection, a factor considered a potential limitation of bCT. The aim of this study is to improve spatial resolution as characterized by the modulation transfer function (MTF) via changes in the scanner hardware components and operational schema. METHODS Four prototypes of pendant-geometry, cone-beam breast CT scanners were designed and developed spanning three generations of design evolution. To improve the system MTF in each bCT generation, modifications were made to the imaging components (x-ray tube and flat-panel detector), system geometry (source-to-isocenter and detector distance), and image acquisition parameters (technique factors, number of projections, system synchronization scheme, and gantry rotational speed). RESULTS Characterization of different generations of bCT systems shows these modifications resulted in a 188% improvement of the limiting MTF properties from the first to second generation and an additional 110% from the second to third. The intrinsic resolution degradation in the azimuthal direction observed in the first generation was corrected by changing the acquisition from continuous to pulsed x-ray acquisition. Utilizing a high resolution detector in the third generation, along with modifications made in system geometry and scan protocol, resulted in a 125% improvement in limiting resolution. An additional 39% improvement was obtained by changing the detector binning mode from 2 × 2 to 1 × 1. CONCLUSIONS These results underscore the advancement in spatial resolution characteristics of breast CT technology. The combined use of a pulsed x-ray system, higher resolution flat-panel detector and changing the scanner geometry and image acquisition logic resulted in a significant fourfold improvement in MTF.


Physics in Medicine and Biology | 2014

A breast-specific, negligible-dose scatter correction technique for dedicated cone-beam breast CT: a physics-based approach to improve Hounsfield Unit accuracy

Kai Yang; George Burkett; John M. Boone

The purpose of this research was to develop a method to correct the cupping artifact caused from x-ray scattering and to achieve consistent Hounsfield Unit (HU) values of breast tissues for a dedicated breast CT (bCT) system. The use of a beam passing array (BPA) composed of parallel-holes has been previously proposed for scatter correction in various imaging applications. In this study, we first verified the efficacy and accuracy using BPA to measure the scatter signal on a cone-beam bCT system. A systematic scatter correction approach was then developed by modeling the scatter-to-primary ratio (SPR) in projection images acquired with and without BPA. To quantitatively evaluate the improved accuracy of HU values, different breast tissue-equivalent phantoms were scanned and radially averaged HU profiles through reconstructed planes were evaluated. The dependency of the correction method on object size and number of projections was studied. A simplified application of the proposed method on five clinical patient scans was performed to demonstrate efficacy. For the typical 10-18 cm breast diameters seen in the bCT application, the proposed method can effectively correct for the cupping artifact and reduce the variation of HU values of breast equivalent material from 150 to 40 HU. The measured HU values of 100% glandular tissue, 50/50 glandular/adipose tissue, and 100% adipose tissue were approximately 46, -35, and -94, respectively. It was found that only six BPA projections were necessary to accurately implement this method, and the additional dose requirement is less than 1% of the exam dose. The proposed method can effectively correct for the cupping artifact caused from x-ray scattering and retain consistent HU values of breast tissues.


Technology in Cancer Research & Treatment | 2010

An X-ray Computed Tomography/Positron Emission Tomography System Designed Specifically for Breast Imaging

John M. Boone; Kai Yang; George Burkett; Nathan J. Packard; Shih Ying Huang; Spencer L. Bowen; Ramsey D. Badawi; Karen K. Lindfors

Mammography has served the population of women who are at-risk for breast cancer well over the past 30 years. While mammography has undergone a number of changes as digital detector technology has advanced, other modalities such as computed tomography have experienced technological sophistication over this same time frame as well. The advent of large field of view flat panel detector systems enable the development of breast CT and several other niche CT applications, which rely on cone beam geometry. The breast, it turns out, is well suited to cone beam CT imaging because the lack of bones reduces artifacts, and the natural tapering of the breast anteriorly reduces the x-ray path lengths through the breast at large cone angle, reducing cone beam artifacts as well. We are in the process of designing a third prototype system which will enable the use of breast CT for image guided interventional procedures. This system will have several copies fabricated so that several breast CT scanners can be used in a multi-institutional clinical trial to better understand the role that this technology can bring to breast imaging.


Proceedings of SPIE | 2013

Development and spatial resolution characterization of a dedicated pulsed x-ray, cone-beam breast CT system

Peymon Gazi; Kai Yang; George Burkett; John M. Boone

Dedicated breast CT (bCT) technology may be useful for patients with high risk of developing breast cancer. Previous studies have shown that bCT outperforms mammography in the visualization of mass lesions, however mammography is superior in identifying microcalcifications. The Breast Tomography Project at UC Davis has led to development of three dedicated breast CT scanners that produce high resolution, fully tomographic images, overcoming tissue superposition effects found in mammography while maintaining an equivalent radiation dose. Over 600 patients have been imaged in an ongoing clinical trial. The first patient scan was performed on the latest bCT scanner developed at UC Davis, called Cambria, on April 12, 2012. The main differences between Cambria and the previous scanners are in using a pulsed xray source (generator and tube) instead of continuous x-ray sources, and also in using the non-binning mode of the flatpanel fluoroscopic detector. The spatial resolution characteristics of the new scanner were investigated and the results show significant improvement in the overall MTF properties. Based on these results, it was concluded that using the pulsed x-ray tube, we were able to restore the MTF degradation caused by motion blurring effect that exists in previous generations of bCT. Moreover, MTF analysis shows that using the detector in the native acquisition mode (1 x 1) results in superior spatial resolution which will likely bring considerable improvement to the delineation of microcalcifications.


Medical Imaging 2004: Physics of Medical Imaging | 2004

Progress in the development of a dedicated breast CT scanner

Alexander L. C. Kwan; Nikula Shah; George Burkett; J. Anthony Seibert; Karen K. Lindfors; Thomas R. Nelson; John M. Boone

A pendant-geometry, cone-beam breast CT scanner has been constructed and is undergoing thorough testing in our facility. The system is capable of acquiring 30 frames/sec in 2×2 binning mode (1024×768 pixels) using a flat panel detector coupled to a thallium-doped cesium iodide scintillator. The DQE of the detector system for RQA5 and RQA9 x-ray beam qualities were computed, and the low frequency DQE values were 65% and 57% respectively at approximately 16 μR/frame. The results also shown that minor improvements in DQE are achieved for exposures greater than 16 μR/frame. It is expected that the scanner will be available for the imaging of human volunteers in the first half of 2004.


Biomedical Physics & Engineering Express | 2015

Preliminary performance characterization of DbPET2.1, a PET scanner dedicated to the imaging of the breast and extremities

Qiyu Peng; George Burkett; Buddika Sumanasena; William W. Moses; Ramsey D. Badawi

The combined effort of several laboratories at our institution resulted in the building of the first high resolution PET/CT prototype dedicated to imaging the body extremities. Ongoing clinical trials for breast cancer diagnosis and assessment of response to treatment underlined the need for a second generation prototype with improved electronics and spatial resolution. A preliminary version has been assembled and fully characterized. In this work we present further improvements in the detector performance as well as the readout electronics for the PET component. The detector consists of a 16×16 array of 1.27×1.27×20mm3 LYSO crystals, the smallest crystal size for completed breast PET prototypes to date, directly coupled to a position-sensitive photomultiplier tube (PSPMT). The scintillator crystals are polished on all 6 faces and separated by ~70 μm ESR reflector. The readout electronics were redesigned to reduce their footprint and improve timing resolution. We report a detector energy and timing resolution of 12% and 1.0 ns, respectively, and an average intrinsic spatial resolution of 1.29 mm (central row in one detector array). The new PET/CT has been fully assembled and initial system characterization is being perfomed. We report a system energy resolution of 15.7%, a timing resolution of 1.5 ns and an FBP image spatial resolution in the center of the FOV of 1.6 mm.

Collaboration


Dive into the George Burkett's collaboration.

Top Co-Authors

Avatar

John M. Boone

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duane Bennett

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peymon Gazi

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge