Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George C. Shields is active.

Publication


Featured researches published by George C. Shields.


Science | 1991

Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees.

Steve C. Schultz; George C. Shields; Thomas A. Steitz

The 3 angstrom resolution crystal structure of the Escherichia coli catabolite gene activator protein (CAP) complexed with a 30-base pair DNA sequence shows that the DNA is bent by 90 degrees. This bend results almost entirely from two 40 degrees kinks that occur between TG/CA base pairs at positions 5 and 6 on each side of the dyad axis of the complex. DNA sequence discrimination by CAP derives both from sequence-dependent distortion of the DNA helix and from direct hydrogen-bonding interactions between three protein side chains and the exposed edges of three base pairs in the major groove of the DNA. The structure of this transcription factor--DNA complex provides insights into possible mechanisms of transcription activation.


Journal of the American Chemical Society | 2002

Absolute pKa Determinations for Substituted Phenols

Matthew D. Liptak; Kevin C. Gross; Paul G. Seybold; Steven Feldgus; George C. Shields

The CBS-QB3 method was used to calculate the gas-phase free energy difference between 20 phenols and their respective anions, and the CPCM continuum solvation method was applied to calculate the free energy differences of solvation for the phenols and their anions. The CPCM solvation calculations were performed on both gas-phase and solvent-phase optimized structures. Absolute pK(a) calculations with solvated phase optimized structures for the CPCM calculations yielded standard deviations and root-mean-square errors of less than 0.4 pK(a) unit. This study is the most accurate absolute determination of the pK(a) values of phenols, and is among the most accurate of any such calculations for any group of compounds. The ability to make accurate predictions of pK(a) values using a coherent, well-defined approach, without external approximations or fitting to experimental data, is of general importance to the chemical community. The solvated phase optimized structures of the anions are absolutely critical to obtain this level of accuracy, and yield a more realistic charge separation between the negatively charged oxygen and the ring system of the phenoxide anions.


Science | 2012

Structures of Cage, Prism, and Book Isomers of Water Hexamer from Broadband Rotational Spectroscopy

Cristobal Perez; Matt T. Muckle; Daniel P. Zaleski; Nathan A. Seifert; Berhane Temelso; George C. Shields; Zbigniew Kisiel; Brooks H. Pate

Cage, Book, and Prism The array of hydrogen bonds governing the extended structure of liquid water is so intricate that chemists have often sought to understand it by studying simpler clusters. Even so, it has been challenging to get a handle on the preferred arrangement adopted by just six water molecules. Interdependent theoretical and spectroscopic studies have narrowed down the lowest-energy hexamer structures to three isomers—respectively designated the cage, the book, and the prism—but their relative energies remain uncertain. Now, Pérez et al. (p. 897; see the Perspective by Saykally and Wales) have observed all three isomers in a single experiment, using Fourier transform microwave spectroscopy, and were able to establish definitively their energy ordering. Observing three distinct water clusters in the same experiment resolves long-standing questions about their relative stabilities. Theory predicts the water hexamer to be the smallest water cluster with a three-dimensional hydrogen-bonding network as its minimum energy structure. There are several possible low-energy isomers, and calculations with different methods and basis sets assign them different relative stabilities. Previous experimental work has provided evidence for the cage, book, and cyclic isomers, but no experiment has identified multiple coexisting structures. Here, we report that broadband rotational spectroscopy in a pulsed supersonic expansion unambiguously identifies all three isomers; we determined their oxygen framework structures by means of oxygen-18–substituted water (H218O). Relative isomer populations at different expansion conditions establish that the cage isomer is the minimum energy structure. Rotational spectra consistent with predicted heptamer and nonamer structures have also been identified.


Journal of Physical Chemistry A | 2011

Benchmark Structures and Binding Energies of Small Water Clusters with Anharmonicity Corrections

Berhane Temelso; Kaye A. Archer; George C. Shields

For (H(2)O)(n) where n = 1-10, we used a scheme combining molecular dynamics sampling with high level ab initio calculations to locate the global and many low lying local minima for each cluster. For each isomer, we extrapolated the RI-MP2 energies to their complete basis set limit, included a CCSD(T) correction using a smaller basis set and added finite temperature corrections within the rigid-rotor-harmonic-oscillator (RRHO) model using scaled and unscaled harmonic vibrational frequencies. The vibrational scaling factors were determined specifically for water clusters by comparing harmonic frequencies with VPT2 fundamental frequencies. We find the CCSD(T) correction to the RI-MP2 binding energy to be small (<1%) but still important in determining accurate conformational energies. Anharmonic corrections are found to be non-negligble; they do not alter the energetic ordering of isomers, but they do lower the free energies of formation of the water clusters by as much as 4 kcal/mol at 298.15 K.


Journal of Computational Chemistry | 1993

Ability of the PM3 quantum-mechanical method to model inter molecular hydrogen bonding between neutral molecules

Marcus W. Jurema; George C. Shields

The PM3 semiempirical quantum‐mechanical method was found to systematically describe intermolecular hydrogen bonding in small polar molecules. PM3 shows charge transfer from the donor to acceptor molecules on the order of 0.02–0.06 units of charge when strong hydrogen bonds are formed. The PM3 method is predictive; calculated hydrogen bond energies with an absolute magnitude greater than 2 kcal mol−1 suggest that the global minimum is a hydrogen bonded complex; absolute energies less than 2 kcal mol−1 imply that other van der Waals complexes are more stable. The geometries of the PM3 hydrogen bonded complexes agree with high‐resolution spectroscopic observations, gas electron diffraction data, and high‐level ab initio calculations. The main limitations in the PM3 method are the underestimation of hydrogen bond lengths by 0.1–0.2 Å for some systems and the underestimation of reliable experimental hydrogen bond energies by approximately 1–2 kcal mol−1. The PM3 method predicts that ammonia is a good hydrogen bond acceptor and a poor hydrogen donor when interacting with neutral molecules. Electronegativity differences between F, N, and O predict that donor strength follows the order F > O > N and acceptor strength follows the order N > O > F. In the calculations presented in this article, the PM3 method mirrors these electronegativity differences, predicting the F‐H‐‐‐N bond to be the strongest and the N‐H‐‐‐F bond the weakest. It appears that the PM3 Hamiltonian is able to model hydrogen bonding because of the reduction of two‐center repulsive forces brought about by the parameterization of the Gaussian core–core interactions. The ability of the PM3 method to model intermolecular hydrogen bonding means reasonably accurate quantum‐mechanical calculations can be applied to small biologic systems.


Journal of Physical Chemistry A | 2010

Accurate Predictions of Water Cluster Formation, (H2O)n=2-10

Robert M. Shields; Berhane Temelso; Kaye A. Archer; Thomas E. Morrell; George C. Shields

An efficient mixed molecular dynamics/quantum mechanics model has been applied to the water cluster system. The use of the MP2 method and correlation consistent basis sets, with appropriate correction for BSSE, allows for the accurate calculation of electronic and free energies for the formation of clusters of 2-10 water molecules. This approach reveals new low energy conformers for (H(2)O)(n=7,9,10). The water heptamer conformers comprise five different structural motifs ranging from a three-dimensional prism to a quasi-planar book structure. A prism-like structure is favored energetically at low temperatures, but a chair-like structure is the global Gibbs free energy minimum past 200 K. The water nonamers exhibit less complexity with all the low energy structures shaped like a prism. The decamer has 30 conformers that are within 2 kcal/mol of the Gibbs free energy minimum structure at 298 K. These structures are categorized into four conformer classes, and a pentagonal prism is the most stable structure from 0 to 320 K. Results can be used as benchmark values for empirical water models and density functionals, and the method can be applied to larger water clusters.


Journal of Chemical Physics | 2001

Accurate relative pKa calculations for carboxylic acids using complete basis set and Gaussian-n models combined with continuum solvation methods

Ann Marie Toth; Matthew D. Liptak; Danielle L. Phillips; George C. Shields

The complete basis set methods CBS-4, CBS-QB3, and CBS-APNO, and the Gaussian methods G2 and G3 were used to calculate the gas phase energy differences between six different carboxylic acids and their respective anions. Two different continuum methods, SM5.42R and CPCM, were used to calculate the free energy differences of solvation for the acids and their anions. Relative pKa values were calculated for each acid using one of the acids as a reference point. The CBS-QB3 and CBS-APNO gas phase calculations, combined with the CPCM/HF/6-31+G(d)//HF/6-31G(d) or CPCM/HF/6-31+G(d)//HF/6-31+G(d) continuum solvation calculations on the lowest energy gas phase conformer, and with the conformationally averaged values, give results accurate to 12 pKa unit.


Science | 2016

Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism

Jeremy O. Richardson; Cristobal Perez; Simon Lobsiger; Adam Reid; Berhane Temelso; George C. Shields; Zbigniew Kisiel; David J. Wales; Brooks H. Pate; Stuart C. Althorpe

Gear-like rotation by a wobbly water duo The molecules in liquid water move about constantly, but on average they cling to each other through hydrogen bonds, like dancers who keep switching partners. Richardson et al. uncovered a fresh twist in this molecular dance (see the Perspective by Clary). Studying clusters of six molecules each—essentially the smallest three-dimensional water droplets—they observed coupled motion of two different molecules in the cluster. The process breaks two different hydrogen bonds concurrently in a pattern akin to rotating gears. Science, this issue p. 1310; see also p. 1267 Rotational spectroscopy and accompanying theory uncover gearlike joint motion of a pair of water molecules in a cluster. [Also see Perspective by Clary] The nature of the intermolecular forces between water molecules is the same in small hydrogen-bonded clusters as in the bulk. The rotational spectra of the clusters therefore give insight into the intermolecular forces present in liquid water and ice. The water hexamer is the smallest water cluster to support low-energy structures with branched three-dimensional hydrogen-bond networks, rather than cyclic two-dimensional topologies. Here we report measurements of splitting patterns in rotational transitions of the water hexamer prism, and we used quantum simulations to show that they result from geared and antigeared rotations of a pair of water molecules. Unlike previously reported tunneling motions in water clusters, the geared motion involves the concerted breaking of two hydrogen bonds. Similar types of motion may be feasible in interfacial and confined water.


Journal of Physical Chemistry A | 2012

Quantum Mechanical Study of Sulfuric Acid Hydration: Atmospheric Implications

Berhane Temelso; Thomas E. Morrell; Robert M. Shields; Marco A. Allodi; Elena K. Wood; Karl N. Kirschner; Thomas C. Castonguay; Kaye A. Archer; George C. Shields

The role of the binary nucleation of sulfuric acid in aerosol formation and its implications for global warming is one of the fundamental unsettled questions in atmospheric chemistry. We have investigated the thermodynamics of sulfuric acid hydration using ab initio quantum mechanical methods. For H(2)SO(4)(H(2)O)(n) where n = 1-6, we used a scheme combining molecular dynamics configurational sampling with high-level ab initio calculations to locate the global and many low lying local minima for each cluster size. For each isomer, we extrapolated the Møller-Plesset perturbation theory (MP2) energies to their complete basis set (CBS) limit and added finite temperature corrections within the rigid-rotor-harmonic-oscillator (RRHO) model using scaled harmonic vibrational frequencies. We found that ionic pair (HSO(4)(-)·H(3)O(+))(H(2)O)(n-1) clusters are competitive with the neutral (H(2)SO(4))(H(2)O)(n) clusters for n ≥ 3 and are more stable than neutral clusters for n ≥ 4 depending on the temperature. The Boltzmann averaged Gibbs free energies for the formation of H(2)SO(4)(H(2)O)(n) clusters are favorable in colder regions of the troposphere (T = 216.65-273.15 K) for n = 1-6, but the formation of clusters with n ≥ 5 is not favorable at higher (T > 273.15 K) temperatures. Our results suggest the critical cluster of a binary H(2)SO(4)-H(2)O system must contain more than one H(2)SO(4) and are in concert with recent findings (1) that the role of binary nucleation is small at ambient conditions, but significant at colder regions of the troposphere. Overall, the results support the idea that binary nucleation of sulfuric acid and water cannot account for nucleation of sulfuric acid in the lower troposphere.


Journal of Chemical Theory and Computation | 2011

The Role of Anharmonicity in Hydrogen-Bonded Systems: The Case of Water Clusters.

Berhane Temelso; George C. Shields

The nature of vibrational anharmonicity has been examined for the case of small water clusters using second-order vibrational perturbation theory (VPT2) applied on second-order Møller-Plesset perturbation theory (MP2) potential energy surfaces. Using a training set of 16 water clusters (H2O)n=2-6,8,9 with a total of 723 vibrational modes, we determined scaling factors that map the harmonic frequencies onto anharmonic ones. The intermolecular modes were found to be substantially more anharmonic than intramolecular bending and stretching modes. Due to the varying levels of anharmonicity of the intermolecular and intramolecular modes, different frequency scaling factors for each region were necessary to achieve the highest accuracy. Furthermore, new scaling factors for zero-point vibrational energies (ZPVE) and vibrational corrections to the enthalpy (ΔHvib) and the entropy (Svib) have been determined. All the scaling factors reported in this study are different from previous works in that they are intended for hydrogen-bonded systems, while others were built using experimental frequencies of covalently bonded systems. An application of our scaling factors to the vibrational frequencies of water dimer and thermodynamic functions of 11 larger water clusters highlights the importance of anharmonic effects in hydrogen-bonded systems.

Collaboration


Dive into the George C. Shields's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zbigniew Kisiel

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

T. F. Moran

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge