Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George C. Stafford is active.

Publication


Featured researches published by George C. Stafford.


Analytical Chemistry | 2014

Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer.

Jody C. May; Cody R. Goodwin; NicholeM. Lareau; Katrina L. Leaptrot; Caleb B. Morris; Ruwan T. Kurulugama; Alex Mordehai; Christian Klein; William J Barry; Ed Darland; Gregor Overney; Kenneth Imatani; George C. Stafford; John C. Fjeldsted; John A. McLean

Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid “omni-omic” characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field.


Journal of Proteome Research | 2008

A Proteomics Grade Electron Transfer Dissociation-enabled Hybrid Linear Ion Trap-orbitrap Mass Spectrometer

Graeme C. McAlister; W. Travis Berggren; Jens Griep-Raming; Stevan Horning; Alexander Makarov; Doug Phanstiel; George C. Stafford; Danielle L. Swaney; John Edward Philip Syka; Joshua J. Coon

Here we detail the modification of a quadrupole linear ion trap-orbitrap hybrid (QLT-orbitrap) mass spectrometer to accommodate a negative chemical ionization (NCI) source. The NCI source is used to produce fluoranthene radical anions for imparting electron transfer dissociation (ETD). The anion beam is stable, robust, and intense so that a sufficient amount of reagents can be injected into the QLT in only 4-8 ms. Following ion/ion reaction in the QLT, ETD product ions are mass-to-charge (m/z) analyzed in either the QLT (for speed and sensitivity) or the orbitrap (for mass resolution and accuracy). Here we describe the physical layout of this device, parametric optimization of anion transport, an evaluation of relevant ETD figures of merit, and the application of this instrument to protein sequence analysis. Described proteomic applications include complex peptide mixture analysis, post-translational modification (PTM) site identification, isotope-encoded quantitation, large peptide characterization, and intact protein analysis. From these experiments, we conclude the ETD-enabled orbitrap will provide the proteomic field with several new opportunities and represents an advance in protein sequence analysis technologies.


Angewandte Chemie | 2009

Infrared Photoactivation Reduces Peptide Folding and Hydrogen-Atom Migration following ETD Tandem Mass Spectrometry

Aaron R. Ledvina; Graeme C. McAlister; Myles W. Gardner; Suncerae I. Smith; James A. Madsen; Jae C. Schwartz; George C. Stafford; John Edward Philip Syka; Jennifer S. Brodbelt; Joshua J. Coon

Electron capture dissociation (ECD)[1] results from the mutual storage of thermal electrons with multiply protonated peptide cations – an experiment generally performed within the high magnetic field of a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). The technique is particularly useful as it generates random backbone cleavage with little regard to the presence of post-translational modifications (PTMs), amino acid composition, or peptide length. Electron transfer dissociation (ETD),[2] the ion-ion analogue of ECD, is conducted in radio frequency (RF) quadrupole ion trap devices where radical anions serve as electron donors. Because it can be implemented on virtually any mass spectrometer with an RF ion transfer or storage device, ETD has become an increasingly widespread dissociation method.


Journal of the American Society for Mass Spectrometry | 2002

Ion trap mass spectrometry: a personal perspective

George C. Stafford

This paper is a personal perspective of the commercial development of the three-dimensional quadrupole ion trap mass spectrometer. Early ion trap invention and development which dates back to 1953, is described. The development of the ion trap is traced through three ages with the last age being where commercial development takes place. Key technical breakthroughs in ion trap technology and commercialization are presented and described up to the present time.


Analytical Chemistry | 2013

Front-End Electron Transfer Dissociation: A New Ionization Source

Lee Earley; Lissa C. Anderson; Dina L. Bai; Christopher Mullen; John E. P. Syka; A. Michelle English; Jean Jacques Dunyach; George C. Stafford; Jeffrey Shabanowitz; Donald F. Hunt; Philip D. Compton

Electron transfer dissociation (ETD), a technique that provides efficient fragmentation while depositing little energy into vibrational modes, has been widely integrated into proteomics workflows. Current implementations of this technique, as well as other ion-ion reactions like proton transfer, involve sophisticated hardware, lack robustness, and place severe design limitations on the instruments to which they are attached. Described herein is a novel, electrical discharge-based reagent ion source that is located in the first differentially pumped region of the mass spectrometer. The reagent source was found to produce intense reagent ion signals over extended periods of time while having no measurable impact on precursor ion signal. Further, the source is simple to construct and enables implementation of ETD on any instrument without modification to footprint. Finally, in the context of hybrid mass spectrometers, relocation of the reagent ion source to the front of the mass spectrometer enables new approaches to gas phase interrogation of intact proteins.


Analytical Chemistry | 2009

Infrared Multiphoton Dissociation of Peptide Cations in a Dual Pressure Linear Ion Trap Mass Spectrometer

Myles W. Gardner; Suncerae I. Smith; Aaron R. Ledvina; James A. Madsen; Joshua J. Coon; Jae C. Schwartz; George C. Stafford; Jennifer S. Brodbelt

A dual pressure linear ion trap mass spectrometer was modified to permit infrared multiphoton dissociation (IRMPD) in each of the two cells-the first a high pressure cell operated at nominally 5 x 10(-3) Torr and the second a low pressure cell operated at nominally 3 x 10(-4) Torr. When IRMPD was performed in the high pressure cell, most peptide ions did not undergo significant photodissociation; however, in the low pressure cell peptide cations were efficiently dissociated with less than 25 ms of IR irradiation regardless of charge state. IRMPD of peptide cations allowed the detection of low m/z product ions including the y(1) fragments and immonium ions which are not typically observed by ion trap collision induced dissociation (CID). Photodissociation efficiencies of approximately 100% and MS/MS (tandem mass spectrometry) efficiencies of greater than 60% were observed for both multiply and singly protonated peptides. In general, higher sequence coverage of peptides was obtained using IRMPD over CID. Further, greater than 90% of the product ion current in the IRMPD mass spectra of doubly charged peptide ions was composed of singly charged product ions compared to the CID mass spectra in which the abundances of the multiply and singly charged product ions were equally divided. Highly charged primary product ions also underwent efficient photodissociation to yield singly charged secondary product ions, thus simplifying the IRMPD product ion mass spectra.


Analytical Chemistry | 2009

Top-Down Protein Fragmentation by Infrared Multiphoton Dissociation in a Dual Pressure Linear Ion Trap

James A. Madsen; Myles W. Gardner; Suncerae I. Smith; Aaron R. Ledvina; Joshua J. Coon; Jae C. Schwartz; George C. Stafford; Jennifer S. Brodbelt

Infrared multiphoton dissociation (IRMPD) was implemented in a novel dual pressure linear ion trap for rapid top-down proteomics. The high pressure cell provided improved trapping and isolation efficiencies while the isotopic profiles of 10+ charged ions could be resolved by mass analysis in the low pressure cell that enabled effective top down protein identification. Striking differences between IRMPD in the low pressure cell and CID in the high pressure cell were observed for proteins ranging from 8.6 to 29 kDa. Because of secondary dissociation, IRMPD yielded product ions in significantly lower charge states as compared to CID, thus facilitating more accurate mass identification and streamlining product ion assignment. This outcome was especially useful for database searching of larger proteins (approximately 29 kDa) as IRMPD substantially improved protein identification and scoring confidence. Also, IRMPD showed an increased selectivity toward backbone cleavages N-terminal to proline and C-terminal to acidic residues (especially for the lowest charge states), which could be useful for a priori spectral predictions and enhanced database searching for protein identification.


Analytical Chemistry | 1987

Instrumentation, applications, and energy deposition in quadrupole ion-trap tandem mass spectrometry

John Nathan Louris; R. Graham Cooks; John E. P. Syka; Paul E. Kelley; George C. Stafford; John F. J. Todd


Analytical Chemistry | 1976

Pulsed positive negative ion chemical ionization mass spectrometry

Donald F. Hunt; George C. Stafford; Frank W. Crow; John W. Russell


Archive | 1982

Method of mass analyzing a sample by use of a quadrupole ion trap

George C. Stafford; Paul E. Kelley; David Russel Stephens

Collaboration


Dive into the George C. Stafford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua J. Coon

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Aaron R. Ledvina

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

James A. Madsen

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Jennifer S. Brodbelt

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Myles W. Gardner

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Suncerae I. Smith

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge