Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George Chlipala is active.

Publication


Featured researches published by George Chlipala.


Pharmaceutical Biology | 2009

Investigation of antimicrobial and protease-inhibitory activity from cultured cyanobacteria.

George Chlipala; Shunyan Mo; Aiko Ito; Stanley Bazarek; Jimmy Orjala

A culture collection of cyanobacteria has been established at the University of Illinois at Chicago. This collection includes marine, terrestrial, and freshwater strains and contains representatives of the five orders of cyanobacteria: Chroococcales, Pleurocapsales, Oscillatoriales, Nostocales, and Stigonematales. In this study, extracts from a subset of 61 strains, 16 marine and 45 freshwater/terrestrial, were evaluated against three current protease targets, i.e. 20S proteasome and two SARS viral proteases, two important bacterial targets, i.e. Mycobacterium tuberculosis and Bacillus anthracis, and in the Artemia salina toxicity assay. In total, extracts of 12 strains possessed significant levels of activity in one or more targets. The overwhelming majority of active extracts (11 of 12) were from either freshwater or terrestrial forms of cyanobacteria, with the greater part of these (9 of 12) being heterocyst-forming strains. These results further support the use of cultured cyanobacteria as a source of biologically active natural products.


Mbio | 2015

Identification of Quorum-Sensing Inhibitors Disrupting Signaling between Rgg and Short Hydrophobic Peptides in Streptococci

Chaitanya Aggarwal; Juan Cristobal Jimenez; Hyun Lee; George Chlipala; Kiira Ratia; Michael J. Federle

ABSTRACT Bacteria coordinate a variety of social behaviors, important for both environmental and pathogenic bacteria, through a process of intercellular chemical signaling known as quorum sensing (QS). As microbial resistance to antibiotics grows more common, a critical need has emerged to develop novel anti-infective therapies, such as an ability to attenuate bacterial pathogens by means of QS interference. Rgg quorum-sensing pathways, widespread in the phylum Firmicutes, employ cytoplasmic pheromone receptors (Rgg transcription factors) that directly bind and elicit gene expression responses to imported peptide signals. In the human-restricted pathogen Streptococcus pyogenes, the Rgg2/Rgg3 regulatory circuit controls biofilm development in response to the short hydrophobic peptides SHP2 and SHP3. Using Rgg-SHP as a model receptor-ligand target, we sought to identify chemical compounds that could specifically inhibit Rgg quorum-sensing circuits. Individual compounds from a diverse library of known drugs and drug-like molecules were screened for their ability to disrupt complexes of Rgg and FITC (fluorescein isothiocyanate)-conjugated SHP using a fluorescence polarization (FP) assay. The best hits were found to bind Rgg3 in vitro with submicromolar affinities, to specifically abolish transcription of Rgg2/3-controlled genes, and to prevent biofilm development in S. pyogenes without affecting bacterial growth. Furthermore, the top hit, cyclosporine A, as well as its nonimmunosuppressive analog, valspodar, inhibited Rgg-SHP pathways in multiple species of Streptococcus. The Rgg-FITC-peptide-based screen provides a platform to identify inhibitors specific for each Rgg type. Discovery of Rgg inhibitors constitutes a step toward the goal of manipulating bacterial behavior for purposes of improving health. IMPORTANCE The global emergence of antibiotic-resistant bacterial infections necessitates discovery not only of new antimicrobials but also of novel drug targets. Since antibiotics restrict microbial growth, strong selective pressures to develop resistance emerge quickly in bacteria. A new strategy to fight microbial infections has been proposed, namely, development of therapies that decrease pathogenicity of invading organisms while not directly inhibiting their growth, thus decreasing selective pressure to establish resistance. One possible means to this goal is to interfere with chemical communication networks used by bacteria to coordinate group behaviors, which can include the synchronized expression of genes that lead to disease. In this study, we identified chemical compounds that disrupt communication pathways regulated by Rgg proteins in species of Streptococcus. Treatment of cultures of S. pyogenes with the inhibitors diminished the development of biofilms, demonstrating an ability to control bacterial behavior with chemicals that do not inhibit growth. The global emergence of antibiotic-resistant bacterial infections necessitates discovery not only of new antimicrobials but also of novel drug targets. Since antibiotics restrict microbial growth, strong selective pressures to develop resistance emerge quickly in bacteria. A new strategy to fight microbial infections has been proposed, namely, development of therapies that decrease pathogenicity of invading organisms while not directly inhibiting their growth, thus decreasing selective pressure to establish resistance. One possible means to this goal is to interfere with chemical communication networks used by bacteria to coordinate group behaviors, which can include the synchronized expression of genes that lead to disease. In this study, we identified chemical compounds that disrupt communication pathways regulated by Rgg proteins in species of Streptococcus. Treatment of cultures of S. pyogenes with the inhibitors diminished the development of biofilms, demonstrating an ability to control bacterial behavior with chemicals that do not inhibit growth.


Frontiers in Aging Neuroscience | 2017

Age drives distortion of brain metabolic, vascular and cognitive functions, and the gut microbiome

Jared D. Hoffman; Ishita Parikh; Stefan J. Green; George Chlipala; Robert P. Mohney; Mignon Keaton; Bjoern Bauer; Anika M.S. Hartz; Ai Ling Lin

Advancing age is the top risk factor for the development of neurodegenerative disorders, including Alzheimer’s disease (AD). However, the contribution of aging processes to AD etiology remains unclear. Emerging evidence shows that reduced brain metabolic and vascular functions occur decades before the onset of cognitive impairments, and these reductions are highly associated with low-grade, chronic inflammation developed in the brain over time. Interestingly, recent findings suggest that the gut microbiota may also play a critical role in modulating immune responses in the brain via the brain-gut axis. In this study, our goal was to identify associations between deleterious changes in brain metabolism, cerebral blood flow (CBF), gut microbiome and cognition in aging, and potential implications for AD development. We conducted our study with a group of young mice (5–6 months of age) and compared those to old mice (18–20 months of age) by utilizing metabolic profiling, neuroimaging, gut microbiome analysis, behavioral assessments and biochemical assays. We found that compared to young mice, old mice had significantly increased levels of numerous amino acids and fatty acids that are highly associated with inflammation and AD biomarkers. In the gut microbiome analyses, we found that old mice had increased Firmicutes/Bacteroidetes ratio and alpha diversity. We also found impaired blood-brain barrier (BBB) function and reduced CBF as well as compromised learning and memory and increased anxiety, clinical symptoms often seen in AD patients, in old mice. Our study suggests that the aging process involves deleterious changes in brain metabolic, vascular and cognitive functions, and gut microbiome structure and diversity, all which may lead to inflammation and thus increase the risk for AD. Future studies conducting comprehensive and integrative characterization of brain aging, including crosstalk with peripheral systems and factors, will be necessary to define the mechanisms underlying the shift from normal aging to pathological processes in the etiology of AD.


Scientific Reports | 2018

Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice.

David Ma; Amy Wang; Ishita Parikh; Stefan J. Green; Jared D. Hoffman; George Chlipala; M. Paul Murphy; Brent S. Sokola; Björn Bauer; Anika M.S. Hartz; Ai Ling Lin

Neurovascular integrity, including cerebral blood flow (CBF) and blood-brain barrier (BBB) function, plays a major role in determining cognitive capability. Recent studies suggest that neurovascular integrity could be regulated by the gut microbiome. The purpose of the study was to identify if ketogenic diet (KD) intervention would alter gut microbiome and enhance neurovascular functions, and thus reduce risk for neurodegeneration in young healthy mice (12–14 weeks old). Here we show that with 16 weeks of KD, mice had significant increases in CBF and P-glycoprotein transports on BBB to facilitate clearance of amyloid-beta, a hallmark of Alzheimer’s disease (AD). These neurovascular enhancements were associated with reduced mechanistic target of rapamycin (mTOR) and increased endothelial nitric oxide synthase (eNOS) protein expressions. KD also increased the relative abundance of putatively beneficial gut microbiota (Akkermansia muciniphila and Lactobacillus), and reduced that of putatively pro-inflammatory taxa (Desulfovibrio and Turicibacter). We also observed that KD reduced blood glucose levels and body weight, and increased blood ketone levels, which might be associated with gut microbiome alteration. Our findings suggest that KD intervention started in the early stage may enhance brain vascular function, increase beneficial gut microbiota, improve metabolic profile, and reduce risk for AD.


PLOS ONE | 2018

Gut microbiota varies by opioid use, circulating leptin and oxytocin in African American men with diabetes and high burden of chronic disease

Elena Barengolts; Stefan J. Green; Yuval Eisenberg; Arfana Akbar; Bharathi Reddivari; Brian T. Layden; Lara R. Dugas; George Chlipala

Objective The gut microbiota is known to be related to type 2 diabetes (T2D), psychiatric conditions, and opioid use. In this study, we tested the hypothesis that variability in gut microbiota in T2D is associated with psycho-metabolic health. Methods A cross-sectional study was conducted among African American men (AAM) (n = 99) that were outpatients at a Chicago VA Medical Center. The main outcome measures included fecal microbiota ecology (by 16S rRNA gene sequencing), psychiatric disorders including opioid use, and circulating leptin and oxytocin as representative hormone biomarkers for obesity and psychological pro-social behavior. Results The study subjects had prevalent overweight/obesity (78%), T2D (50%) and co-morbid psychiatric (65%) and opioid use (45%) disorders. In the analysis of microbiota, the data showed interactions of opioids, T2D and metformin with Bifidobacterium and Prevotella genera. The differential analysis of Bifidobacterium stratified by opioids, T2D and metformin, showed significant interactions among these factors indicating that the effect of one factor was changed by the other (FDR-adjusted p [q] < 0.01). In addition, the pair-wise comparison showed that participants with T2D not taking metformin had a significant 6.74 log2 fold increase in Bifidobacterium in opioid users as compared to non-users (q = 2.2 x 10−8). Since metformin was not included in this pair-wise comparison, the significant ‘q’ suggested association of opioid use with Bifidobacterium abundance. The differences in Bifidobacterium abundance could possibly be explained by opioids acting as organic cation transporter 1 (OCT1) inhibitors. Analysis stratified by lower and higher leptin and oxytocin (divided by the 50th percentile) in the subgroup without T2D showed lower Dialister in High-Leptin vs. Low-Leptin (p = 0.03). Contrary, the opposite was shown for oxytocin, higher Dialister in High-Oxytocin vs. Low-Oxytocin (p = 0.04). Conclusions The study demonstrated for the first time that Bifidobacterium and Prevotella abundance was affected by interactions of T2D, metformin and opioid use. Also, in subjects without T2D Dialister abundance varied according to circulating leptin and oxytocin.


PLOS ONE | 2017

Fructose diet alleviates acetaminophen-induced hepatotoxicity in mice

Sungjoon Cho; Ashutosh Tripathi; George Chlipala; Stefan J. Green; Hyun-Woo Lee; Eugene B. Chang; Hyunyoung Jeong

Acetaminophen (APAP) is a commonly used analgesic and antipyretic that can cause hepatotoxicity due to production of toxic metabolites via cytochrome P450 (Cyp) 1a2 and Cyp2e1. Previous studies have shown conflicting effects of fructose (the major component in Western diet) on the susceptibility to APAP-induced hepatotoxicity. To evaluate the role of fructose-supplemented diet in modulating the extent of APAP-induced liver injury, male C57BL/6J mice were given 30% (w/v) fructose in water (or regular water) for 8 weeks, followed by oral administration of APAP. APAP-induced liver injury (determined by serum levels of liver enzymes) was decreased by two-fold in mice pretreated with fructose. Fructose-treated mice exhibited (~1.5 fold) higher basal glutathione levels and (~2 fold) lower basal (mRNA and activity) levels of Cyp1a2 and Cyp2e1, suggesting decreased bioactivation of APAP and increased detoxification of toxic metabolite in fructose-fed mice. Hepatic mRNA expression of heat shock protein 70 was also found increased in fructose-fed mice. Analysis of bacterial 16S rRNA gene amplicons from the cecal samples of vehicle groups showed that the fructose diet altered gut bacterial community, leading to increased α-diversity. The abundance of several bacterial taxa including the genus Anaerostipes was found to be significantly correlated with the levels of hepatic Cyp2e1, Cyp1a2 mRNA, and glutathione. Together, these results suggest that the fructose-supplemented diet decreases APAP-induced liver injury in mice, in part by reducing metabolic activation of APAP and inducing detoxification of toxic metabolites, potentially through altered composition of gut microbiota.


Tetrahedron Letters | 2014

Carbamidocyclophanes F and G with Anti-Mycobacterium tuberculosis Activity from the Cultured Freshwater Cyanobacterium Nostoc sp.

S Luo; Hahk Soo Kang; Aleksej Krunic; George Chlipala; Geping Cai; Wei Lun Chen; Scott G. Franzblau; Steven M. Swanson; Jimmy Orjala


Journal of Microbiology and Biotechnology | 2008

Isolation and Structure Determination of a Proteasome Inhibitory Metabolite from a Culture of Scytonema hofmanni

Sang Hee Shim; George Chlipala; Jimmy Orjala


The FASEB Journal | 2017

Fructose diet decreases APAP-induced hepatotoxicity in mice

Ashutosh Tripathi; Sungjoon Cho; George Chlipala; Stefan J. Green; Hyunyoung Jeong


Planta Medica | 2016

Novel cytotoxic merocyclophanes from the cultured cyanbacterium Nostoc sp. (UIC 10110)

Daniel S. May; Cm Crnkovic; S Luo; Aleksej Krunic; George Chlipala; Wei Lun Chen; Joanna E. Burdette; Steven M. Swanson; Jimmy Orjala

Collaboration


Dive into the George Chlipala's collaboration.

Top Co-Authors

Avatar

Jimmy Orjala

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Stefan J. Green

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Aleksej Krunic

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

S Luo

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Wei Lun Chen

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Daniel S. May

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Joanna E. Burdette

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Steven M. Swanson

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Ai Ling Lin

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge