Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George E. Bentley is active.

Publication


Featured researches published by George E. Bentley.


Journal of Biological Rhythms | 2001

Photoperiodic Control of Seasonality in Birds

Alistair Dawson; Verdun M. King; George E. Bentley; Gregory F. Ball

This review examines how birds use the annual cycle in photoperiod to ensure that seasonal events—breeding, molt, and song production—happen at the appropriate time of year. Differences in breeding strategies between birds and mammals reflect basic differences in biology. Avian breeding seasons tend to be of shorter duration and more asymmetric with respect to changes in photoperiod. Breeding seasons can occur at the same time each year (predictable) or at different times (opportunistic), depending on the food resource. In all cases, there is evidence for involvement of photoperiodic control, nonphotoperiodic control, and endogenous circannual rhythmicity. In predictable breeders (most nontropical species), photoperiod is the predominant proximate factor. Increasing photoperiods of spring stimulate secretion of gonadotropin-releasing hormone (GnRH) and consequent gonadal maturation. However, breeding ends before the return of short photoperiods. This is the consequence of a second effect of long photoperiods—the induction of photorefractoriness. This dual role of long photoperiods is required to impart the asymmetry in breeding seasons. Typically, gonadal regression through photorefractoriness is associated with a massive decrease in hypothalamic GnRH, essentially a reversal to a pre-pubertal condition. Although breeding seasons are primarily determined by photoperiodic control of GnRH neurons, prolactin may be important in determining the exact timing of gonadal regression. In tropical and opportunistic breeders, endogenous circannual rhythmicity may be more important. In such species, the reproductive system remains in a state of “readiness to breed” for a large part of the year, with nonphotic cues acting as proximate cues to time breeding. Circannual rhythmicity may result from a temporal sequence of different physiological states rather than a molecular or cellular mechanism as in circadian rhythmicity. Avian homologues of mammalian clock genes Per2, Per3, Clock, bmal1, and MOP4 have been cloned. At the molecular level, avian circadian clocks appear to function in a similar manner to those of mammals. Photoperiodic time measurement involves interaction between a circadian rhythm of photoinducibility and, unlike mammals, deep brain photoreceptors. The exact location of these remains unclear. Although the eyes and pineal generate a daily cycle in melatonin, this photoperiodic signal is not used to time seasonal breeding. Instead, photoperiodic responses appear to involve direct interaction between photoreceptors and GnRH neurons. Thyroid hormones are required in some way for this system to function. In addition to gonadal function, song production is also affected by photoperiod. Several of the nuclei involved in the song system show seasonal changes in volume, greater in spring than in the fall. The increase in volume is, in part, due to an increase in cell number as a result of neurogenesis. There is no seasonal change in the birth of neurons but rather in their survival. Testosterone and melatonin appear to work antagonistically in regulating volume.


Endocrinology | 2008

Variation in Kisspeptin and RFamide-Related Peptide (RFRP) Expression and Terminal Connections to Gonadotropin-Releasing Hormone Neurons in the Brain: A Novel Medium for Seasonal Breeding in the Sheep

Jeremy T. Smith; Lique M. Coolen; Lance J. Kriegsfeld; Ika P. Sari; Mohammad R. Jaafarzadehshirazi; Matthew Maltby; Katherine L. Bateman; Robert L. Goodman; Alan J. Tilbrook; Takayoshi Ubuka; George E. Bentley; Iain J. Clarke; Michael N. Lehman

Reproductive activity in sheep is seasonal, being activated by short-day photoperiods and inhibited by long days. During the nonbreeding season, GnRH secretion is reduced by both steroid-independent and steroid-dependent (increased response to estradiol negative feedback) effects of photoperiod. Kisspeptin (also known as metastin) and gonadotropin-inhibitory hormone (GnIH, or RFRP) are two RFamide neuropeptides that appear critical in the regulation of the reproductive neuroendocrine axis. We hypothesized that expression of kisspeptin and/or RFRP underlies the seasonal change in GnRH secretion. We examined kisspeptin and RFRP (protein and mRNA) expression in the brains of ovariectomized (OVX) ewes treated with estradiol (OVX+E) during the nonbreeding and breeding seasons. In OVX+E ewes, greater expression of kisspeptin and Kiss1 mRNA in the arcuate nucleus and lesser expression of RFRP (protein) in the dorsomedial nucleus of the hypothalamus were concurrent with the breeding season. There was also a greater number of kisspeptin terminal contacts onto GnRH neurons and less RFRP-GnRH contacts during the breeding season (compared with the nonbreeding season) in OVX+E ewes. Comparison of OVX and OVX+E ewes in the breeding and nonbreeding season revealed a greater effect of steroid replacement on inhibition of kisspeptin protein and Kiss1 mRNA expression during the nonbreeding season. Overall, we propose that the two RFamide peptides, kisspeptin and RFRP, act in concert, with opposing effects, to regulate the activity of GnRH neurons across the seasons, leading to the annual change in fertility and the cyclical seasonal transition from nonbreeding to breeding season.


Endocrinology | 2008

Potent Action of RFamide-Related Peptide-3 on Pituitary Gonadotropes Indicative of a Hypophysiotropic Role in the Negative Regulation of Gonadotropin Secretion

Iain J. Clarke; Ika P. Sari; Yue Qi; Jeremy T. Smith; Helena C. Parkington; Takayoshi Ubuka; Javed Iqbal; Qun Li; Alan J. Tilbrook; Kevin Morgan; Adam J. Pawson; Kazuyoshi Tsutsui; Robert P. Millar; George E. Bentley

We identified a gene in the ovine hypothalamus encoding for RFamide-related peptide-3 (RFRP-3), and tested the hypothesis that this system produces a hypophysiotropic hormone that inhibits the function of pituitary gonadotropes. The RFRP-3 gene encodes for a peptide that appears identical to human RFRP-3 homolog. Using an antiserum raised against RFRP-3, cells were localized to the dorsomedial hypothalamic nucleus/paraventricular nucleus of the ovine brain and shown to project to the neurosecretory zone of the ovine median eminence, predicating a role for this peptide in the regulation of anterior pituitary gland function. Ovine RFRP-3 peptide was tested for biological activity in vitro and in vivo, and was shown to reduce LH and FSH secretion in a specific manner. RFRP-3 potently inhibited GnRH-stimulated mobilization of intracellular calcium in gonadotropes. These data indicate that RFRP-3 is a specific and potent mammalian gonadotropin-inhibiting hormone, and that it acts upon pituitary gonadotropes to reduce GnRH-stimulated gonadotropin secretion.


Journal of Neuroendocrinology | 2003

Gonadotropin-Inhibitory Peptide in Song Sparrows (Melospiza melodia) in Different Reproductive Conditions, and in House Sparrows (Passer domesticus) Relative to Chicken-Gonadotropin-Releasing Hormone

George E. Bentley; Nicole Perfito; Kazuyoshi Ukena; Kazuyoshi Tsutsui; John C. Wingfield

Gonadotropin‐releasing hormone (GnRH) regulates reproduction in all vertebrates. Until recently, an antagonistic neuropeptide for gonadotropin was unknown. The discovery of an RFamide peptide in quail that inhibits gonadotropin release in vitro raised the possibility of direct hypothalamic inhibition of gonadotropin release. This peptide has now been named gonadotropin‐inhibitory hormone (GnIH). We investigated GnIH presence in the hypothalamus of two seasonally breeding songbird species, house sparrows (Passer domesticus) and song sparrows (Melospiza melodia). Using immunocytochemistry (ICC), GnIH‐containing neurones were localized in both species in the paraventricular nucleus, with GnIH‐containing fibres visible in multiple brain locations, including the median eminence and brainstem. Double‐label ICC with light microscopy and fluorescent ICC with confocal microscopy indicate a high probability of colocalization of GnIH with GnRH neurones and fibres within the avian brain. It is plausible that GnIH could be acting at the level of the hypothalamus to regulate gonadotropin release as well as at the pituitary gland. In a photoperiod manipulation experiment, GnIH‐containing neurones were larger in birds at the termination of the breeding season than at other times, consistent with a role for this neuropeptide in the regulation of seasonal breeding. We have yet to elucidate the dynamics of GnIH synthesis and release at different times of year, but the data imply temporal regulation of this peptide. In summary, GnIH has the potential to regulate gonadotropin release at more than one level, and its distribution is suggestive of multiple regulatory functions in the central nervous system.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Stress increases putative gonadotropin inhibitory hormone and decreases luteinizing hormone in male rats

Elizabeth D. Kirby; Anna C. Geraghty; Takayoshi Ubuka; George E. Bentley; Daniela Kaufer

The subjective experience of stress leads to reproductive dysfunction in many species, including rodents and humans. Stress effects on reproduction result from multilevel interactions between the hormonal stress response system, i.e., the hypothalamic–pituitary–adrenal (HPA) axis, and the hormonal reproductive system, i.e., the hypothalamic–pituitary–gonadal (HPG) axis. A novel negative regulator of the HPG axis known as gonadotropin-inhibitory hormone (GnIH) was recently discovered in quail, and orthologous neuropeptides known as RFamide-related peptides (RFRPs) have also been identified in rodents and primates. It is currently unknown, however, whether GnIH/RFRPs influence HPG axis activity in response to stress. We show here that both acute and chronic immobilization stress lead to an up-regulation of RFRP expression in the dorsomedial hypothalamus (DMH) of adult male rats and that this increase in RFRP is associated with inhibition of downstream HPG activity. We also show that adrenalectomy blocks the stress-induced increase in RFRP expression. Immunohistochemistry revealed that 53% of RFRP cells express receptors for glucocorticoids (GCs), indicating that adrenal GCs can mediate the stress effect through direct action on RFRP cells. It is thought that stress effects on central control of reproduction are largely mediated by direct or indirect effects on GnRH-secreting neurons. Our data show that stress-induced increases in adrenal GCs cause an increase in RFRP that contributes to hypothalamic suppression of reproductive function. This novel insight into HPA-HPG interaction provides a paradigm shift for work on stress-related reproductive dysfunction and infertility, and indicates that future work on stress and reproductive system interactions must include investigation of the role of GnIH/RFRP.


Frontiers in Neuroendocrinology | 2010

Gonadotropin-inhibitory hormone (GnIH) and its control of central and peripheral reproductive function.

Kazuyoshi Tsutsui; George E. Bentley; Grégoy Y. Bédécarrats; Tomohiro Osugi; Takayoshi Ubuka; Lance J. Kriegsfeld

Identification of novel neurohormones that regulate the reproductive axis is essential for the progress of neuroendocrinology. The decapeptide gonadotropin-releasing hormone (GnRH) is the primary factor responsible for the hypothalamic control of gonadotropin secretion. Gonadal sex steroids and inhibin modulate gonadotropin secretion via feedback from the gonads, but a neuropeptide that directly inhibits gonadotropin secretion was unknown in vertebrates until 2000 when a hypothalamic dodecapeptide serving this function was discovered in quail. Because of its action on cultured pituitary in quail, it was named gonadotropin-inhibitory hormone (GnIH). GnIH acts on the pituitary and on GnRH neurons in the hypothalamus via a novel G protein-coupled receptor (GPR147). GPR74 may also be a possible candidate GnIH receptor. GnIH decreases gonadotropin synthesis and release, inhibiting gonadal development and maintenance. Melatonin stimulates the expression and release of GnIH via melatonin receptors expressed by GnIH neurons. GnIH actions and interactions with GnRH seem common not only to several avian species, but also to mammals. Thus, GnIH is considered to have an evolutionarily conserved role in controlling vertebrate reproduction, and GnIH homologs have also been identified in the hypothalamus of mammals. As in birds, mammalian GnIH homologs act to inhibit gonadotropin release in several species. More recent evidence in birds and mammals indicates that GnIH may operate at the level of the gonads as an autocrine/paracrine regulator of steroidogenesis and gametogenesis. Importantly, GnIH in birds and mammals appears to act at all levels of the hypothalamo-pituitary-gonadal (HPG) axis, and possibly over different time-frames (minutes-days). Thus, GnIH and its homologs appear to act as key neurohormones controlling vertebrate reproduction. The discovery of GnIH has enabled us to understand and manipulate vertebrate reproduction from an entirely new perspective.


PLOS ONE | 2009

Identification of Human GnIH Homologs, RFRP-1 and RFRP-3, and the Cognate Receptor, GPR147 in the Human Hypothalamic Pituitary Axis

Takayoshi Ubuka; Kevin Morgan; Adam J. Pawson; Tomohiro Osugi; Vishwajit S. Chowdhury; Hiroyuki Minakata; Kazuyoshi Tsutsui; Robert P. Millar; George E. Bentley

The existence of a hypothalamic gonadotropin-inhibiting system has been elusive. A neuropeptide named gonadotropin-inhibitory hormone (GnIH, SIKPSAYLPLRF-NH2) which directly inhibits gonadotropin synthesis and release from the pituitary was recently identified in quail hypothalamus. Here we identify GnIH homologs in the human hypothalamus and characterize their distribution and biological activity. GnIH homologs were isolated from the human hypothalamus by immunoaffinity purification, and then identified as MPHSFANLPLRF-NH2 (human RFRP-1) and VPNLPQRF-NH2 (human RFRP-3) by mass spectrometry. Immunocytochemistry revealed GnIH-immunoreactive neuronal cell bodies in the dorsomedial region of the hypothalamus with axonal projections to GnRH neurons in the preoptic area as well as to the median eminence. RT-PCR and subsequent DNA sequencing of the PCR products identified human GnIH receptor (GPR147) mRNA expression in the hypothalamus as well as in the pituitary. In situ hybridization further identified the expression of GPR147 mRNA in luteinizing hormone producing cells (gonadotropes). Human RFRP-3 has recently been shown to be a potent inhibitor of gonadotropin secretion in cultured sheep pituitary cells by inhibiting Ca2+ mobilization. It also directly modulates GnRH neuron firing. The identification of two forms of GnIH (RFRP-1 and RFRP-3) in the human hypothalamus which targets human GnRH neurons and gonadotropes and potently inhibit gonadotropin in sheep models provides a new paradigm for the regulation of hypothalamic-pituitary-gonadal axis in man and a novel means for manipulating reproductive functions.


Endocrinology | 1999

Androgen Receptor, Estrogen Receptor α, and Estrogen Receptorβ Show Distinct Patterns of Expression in Forebrain Song Control Nuclei of European Starlings1

Daniel J. Bernard; George E. Bentley; Jacques Balthazart; Fred W. Turek; Gregory F. Ball

In songbirds, singing behavior is controlled by a discrete network of interconnected brain nuclei known collectively as the song control system. Both the development of this system and the expression of singing behavior in adulthood are strongly influenced by sex steroid hormones. Although both androgenic and estrogenic steroids have effects, androgen receptors (AR) are more abundantly and widely expressed in song nuclei than are estrogen receptors (ERα). The recent cloning of a second form of the estrogen receptor in mammals, ERβ, raises the possibility that a second receptor subtype is present in songbirds and that estrogenic effects in the song system may be mediated via ERβ. We therefore cloned the ERβ complementary DNA (cDNA) from a European starling preoptic area-hypothalamic cDNA library and used in situ hybridization histochemistry to examine its expression in forebrain song nuclei, relative to the expression of AR and ERα messenger RNA (mRNA), in the adjacent brain sections. The starling ERβ cDNA...


Endocrinology | 2008

Alterations in RFamide-related peptide expression are coordinated with the preovulatory luteinizing hormone surge.

Erin M. Gibson; Stephanie A. Humber; Sachi Jain; Wilbur P. Williams; Sheng Zhao; George E. Bentley; Kazuyoshi Tsutsui; Lance J. Kriegsfeld

The preovulatory LH surge is triggered when the circadian pacemaker, the bilateral suprachiasmatic nucleus (SCN), stimulates the GnRH system in the presence of high estrogen concentrations (positive feedback). Importantly, during the remainder of the estrous cycle, estradiol inhibits LH release via negative feedback. We have recently documented the presence of a novel mammalian RFamide-related peptide (RFRP), a putative gonadotropin-inhibitory hormone (GnIH), that presumably acts upstream of GnRH to modulate the negative feedback effects of estrogen. The present series of studies used female Syrian hamsters to examine the possibility that, in addition to driving the LH surge positively, the SCN concomitantly coordinates the removal of steroid-mediated RFRP inhibition of the gonadotropic axis to permit the surge. We found that the SCN forms close appositions with RFRP cells, suggesting the possibility for direct temporal control of RFRP activity. During the time of the LH surge, immediate-early gene expression is reduced in RFRP cells, and this temporal regulation is estrogen dependent. To determine whether projections from the SCN regulate the timed reduction in activation of the RFRP system, we exploited the phenomenon of splitting. In split animals in which the SCN are active in antiphase, activation of the RFRP system is asymmetrical. Importantly, this asymmetry is opposite to the state of the GnRH system. Together, these findings point to novel circadian control of the RFRP system and potential participation in the circuitry controlling ovulatory function.


Hormones and Behavior | 2006

Rapid inhibition of female sexual behavior by gonadotropin-inhibitory hormone (GnIH).

George E. Bentley; Jay P. Jensen; Gurpinder J. Kaur; Douglas W. Wacker; Kazuyoshi Tsutsui; John C. Wingfield

Gonadotropin-releasing hormone (GnRH) is largely responsible for the initiation of sexual behaviors; one form of GnRH activates a physiological cascade causing gonadal growth and gonadal steroid feedback to the brain, and another form is thought to act as a neurotransmitter to enhance sexual receptivity. In contrast to GnRH, gonadotropin-inhibitory hormone (GnIH) inhibits gonadotropin release. The distribution of GnIH in the avian brain suggests that it has not only hypophysiotropic actions but also unknown behavioral actions. GnIH fibers are present in the median eminence (ME) and are in apparent contact with chicken GnRH (cGnRH)-I and -II neurons and fibers. In birds, cGnRH-I regulates pituitary gonadotropin release, whereas cGnRH-II enhances copulation solicitation in estradiol-primed females exposed to male song. In the present study, we determined the effects of GnIH administered centrally to female white-crowned sparrows. A physiological dose of GnIH reduced circulating LH and inhibited copulation solicitation, without affecting locomotor activity. Using rhodaminated GnIH, putative GnIH binding sites were seen in the ME close to GnRH-I fiber terminals and in the midbrain on or close to GnRH-II neurons. These data demonstrate direct effects of GnIH upon reproductive physiology and behavior, possibly via separate actions on two forms of GnRH.

Collaboration


Dive into the George E. Bentley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takayoshi Ubuka

Monash University Malaysia Campus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole Perfito

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge