Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lance J. Kriegsfeld is active.

Publication


Featured researches published by Lance J. Kriegsfeld.


Frontiers in Neuroendocrinology | 2010

Gonadotropin-inhibitory hormone (GnIH) and its control of central and peripheral reproductive function.

Kazuyoshi Tsutsui; George E. Bentley; Grégoy Y. Bédécarrats; Tomohiro Osugi; Takayoshi Ubuka; Lance J. Kriegsfeld

Identification of novel neurohormones that regulate the reproductive axis is essential for the progress of neuroendocrinology. The decapeptide gonadotropin-releasing hormone (GnRH) is the primary factor responsible for the hypothalamic control of gonadotropin secretion. Gonadal sex steroids and inhibin modulate gonadotropin secretion via feedback from the gonads, but a neuropeptide that directly inhibits gonadotropin secretion was unknown in vertebrates until 2000 when a hypothalamic dodecapeptide serving this function was discovered in quail. Because of its action on cultured pituitary in quail, it was named gonadotropin-inhibitory hormone (GnIH). GnIH acts on the pituitary and on GnRH neurons in the hypothalamus via a novel G protein-coupled receptor (GPR147). GPR74 may also be a possible candidate GnIH receptor. GnIH decreases gonadotropin synthesis and release, inhibiting gonadal development and maintenance. Melatonin stimulates the expression and release of GnIH via melatonin receptors expressed by GnIH neurons. GnIH actions and interactions with GnRH seem common not only to several avian species, but also to mammals. Thus, GnIH is considered to have an evolutionarily conserved role in controlling vertebrate reproduction, and GnIH homologs have also been identified in the hypothalamus of mammals. As in birds, mammalian GnIH homologs act to inhibit gonadotropin release in several species. More recent evidence in birds and mammals indicates that GnIH may operate at the level of the gonads as an autocrine/paracrine regulator of steroidogenesis and gametogenesis. Importantly, GnIH in birds and mammals appears to act at all levels of the hypothalamo-pituitary-gonadal (HPG) axis, and possibly over different time-frames (minutes-days). Thus, GnIH and its homologs appear to act as key neurohormones controlling vertebrate reproduction. The discovery of GnIH has enabled us to understand and manipulate vertebrate reproduction from an entirely new perspective.


Endocrinology | 2008

Alterations in RFamide-related peptide expression are coordinated with the preovulatory luteinizing hormone surge.

Erin M. Gibson; Stephanie A. Humber; Sachi Jain; Wilbur P. Williams; Sheng Zhao; George E. Bentley; Kazuyoshi Tsutsui; Lance J. Kriegsfeld

The preovulatory LH surge is triggered when the circadian pacemaker, the bilateral suprachiasmatic nucleus (SCN), stimulates the GnRH system in the presence of high estrogen concentrations (positive feedback). Importantly, during the remainder of the estrous cycle, estradiol inhibits LH release via negative feedback. We have recently documented the presence of a novel mammalian RFamide-related peptide (RFRP), a putative gonadotropin-inhibitory hormone (GnIH), that presumably acts upstream of GnRH to modulate the negative feedback effects of estrogen. The present series of studies used female Syrian hamsters to examine the possibility that, in addition to driving the LH surge positively, the SCN concomitantly coordinates the removal of steroid-mediated RFRP inhibition of the gonadotropic axis to permit the surge. We found that the SCN forms close appositions with RFRP cells, suggesting the possibility for direct temporal control of RFRP activity. During the time of the LH surge, immediate-early gene expression is reduced in RFRP cells, and this temporal regulation is estrogen dependent. To determine whether projections from the SCN regulate the timed reduction in activation of the RFRP system, we exploited the phenomenon of splitting. In split animals in which the SCN are active in antiphase, activation of the RFRP system is asymmetrical. Importantly, this asymmetry is opposite to the state of the GnRH system. Together, these findings point to novel circadian control of the RFRP system and potential participation in the circuitry controlling ovulatory function.


Journal of Neuroendocrinology | 2010

Discovery and Evolutionary History of Gonadotrophin―Inhibitory Hormone and Kisspeptin: New Key Neuropeptides Controlling Reproduction

Kazuyoshi Tsutsui; George E. Bentley; Lance J. Kriegsfeld; Tomohiro Osugi; Jae Young Seong; Hubert Vaudry

Gonadotrophin‐releasing hormone (GnRH) is the primary hypothalamic factor responsible for the control of gonadotrophin secretion in vertebrates. However, within the last decade, two other hypothalamic neuropeptides have been found to play key roles in the control of reproductive functions: gonadotrophin‐inhibitory hormone (GnIH) and kisspeptin. In 2000, we discovered GnIH in the quail hypothalamus. GnIH inhibits gonadotrophin synthesis and release in birds through actions on GnRH neurones and gonadotrophs, mediated via GPR147. Subsequently, GnIH orthologues were identified in other vertebrate species from fish to humans. As in birds, mammalian and fish GnIH orthologues inhibit gonadotrophin release, indicating a conserved role for this neuropeptide in the control of the hypothalamic‐pituitary‐gonadal axis across species. Subsequent to the discovery of GnIH, kisspeptin, encoded by the KiSS‐1 gene, was discovered in mammals. By contrast to GnIH, kisspeptin has a direct stimulatory effect on GnRH neurones via GPR54. GPR54 is also expressed in pituitary cells, but whether gonadotrophs are targets for kisspeptin remains unresolved. The KiSS‐1 gene is also highly conserved and has been identified in mammals, amphibians and fish. We have recently found a second isoform of KiSS‐1, designated KiSS‐2, in several vertebrates, but not birds, rodents or primates. In this review, we highlight the discovery, mechanisms of action, and functional significance of these two chief regulators of the reproductive axis.


General and Comparative Endocrinology | 2012

Gonadotropin-inhibitory hormone (GnIH): discovery, progress and prospect.

Kazuyoshi Tsutsui; Takayoshi Ubuka; George E. Bentley; Lance J. Kriegsfeld

A hypothalamic neuropeptide, gonadotropin-releasing hormone (GnRH), is the primary factor regulating gonadotropin secretion. An inhibitory hypothalamic neuropeptide for gonadotropin secretion was, until recently, unknown, although gonadal sex steroids and inhibin can modulate gonadotropin secretion. Findings from the last decade, however, indicate that GnRH is not the sole hypothalamic regulatory neuropeptide of vertebrate reproduction, with gonadotropin-inhibitory hormone (GnIH) playing a key role in the inhibition of reproduction. GnIH was originally identified in birds and subsequently in mammals and other vertebrates. GnIH acts on the pituitary and on GnRH neurons in the hypothalamus via a novel G protein-coupled receptor (GPR147). GnIH decreases gonadotropin synthesis and release, inhibiting gonadal development and maintenance. Such a down-regulation of the hypothalamo-pituitary-gonadal (HPG) axis may be conserved across vertebrates. Recent evidence further indicates that GnIH operates at the level of the gonads as an autocrine/paracrine regulator of steroidogenesis and gametogenesis. More recent evidence suggests that GnIH also acts both upstream of the GnRH system and at the level of the gonads to appropriately regulate reproductive activity across the seasons and during times of stress. The discovery of GnIH has fundamentally changed our understanding of hypothalamic control of reproduction. This review summarizes the discovery, progress and prospect of GnIH, a key regulator of vertebrate reproduction.


PLOS ONE | 2010

Experimental ‘Jet Lag’ Inhibits Adult Neurogenesis and Produces Long-Term Cognitive Deficits in Female Hamsters

Erin M. Gibson; Connie Wang; Stephanie Tjho; Neera Khattar; Lance J. Kriegsfeld

Background Circadian disruptions through frequent transmeridian travel, rotating shift work, and poor sleep hygiene are associated with an array of physical and mental health maladies, including marked deficits in human cognitive function. Despite anecdotal and correlational reports suggesting a negative impact of circadian disruptions on brain function, this possibility has not been experimentally examined. Methodology/Principal Findings In the present study, we investigated whether experimental ‘jet lag’ (i.e., phase advances of the light∶dark cycle) negatively impacts learning and memory and whether any deficits observed are associated with reductions in hippocampal cell proliferation and neurogenesis. Because insults to circadian timing alter circulating glucocorticoid and sex steroid concentrations, both of which influence neurogenesis and learning/memory, we assessed the contribution of these endocrine factors to any observed alterations. Circadian disruption resulted in pronounced deficits in learning and memory paralleled by marked reductions in hippocampal cell proliferation and neurogenesis. Significantly, deficits in hippocampal-dependent learning and memory were not only seen during the period of the circadian disruption, but also persisted well after the cessation of jet lag, suggesting long-lasting negative consequences on brain function. Conclusions/Significance Together, these findings support the view that circadian disruptions suppress hippocampal neurogenesis via a glucocorticoid-independent mechanism, imposing pronounced and persistent impairments on learning and memory.


Experimental Gerontology | 2009

Aging in the circadian system: Considerations for health, disease prevention and longevity

Erin M. Gibson; Wilbur P. Williams; Lance J. Kriegsfeld

The circadian system orchestrates internal physiology on a daily schedule to promote optimal health and maximize disease prevention. Chronic disruptions in circadian function are associated with an increase in a variety of disease states including, heart disease, ulcers and diabetes. With advanced age, the genes regulating circadian function at the cellular level become disorganized and the ability of the brain clock to entrain to local time diminishes. As a result, aged individuals exhibit a loss of temporal coordination among bodily systems, leading to deficits in homeostasis and sub-optimal functioning. Such disruptions in the circadian system appear to accelerate the aging process and contribute to senescence, with some systems being more vulnerable than others. This review explores aging-associated changes in circadian function and examines evidence linking such alterations to adverse health consequences in late life and promotion of the aging process.


Journal of Neuroendocrinology | 2010

The Roles of RFamide-Related Peptide-3 in Mammalian Reproductive Function and Behaviour

Lance J. Kriegsfeld; Erin M. Gibson; Wilbur P. Williams; Sheng Zhao; Alex O. Mason; George E. Bentley; Kazuyoshi Tsutsui

To maximise reproductive success, organisms restrict breeding to optimal times of the day or year, when internal physiology and external environmental conditions are suitable for the survival of both parent and offspring. To appropriately coordinate reproductive activity, internal and external standing is communicated to the hypothalamic‐pituitary‐gonadal axis via a coordinated balance of stimulatory and inhibitory neurochemical systems. The cumulative balance of these mediators ultimately drives the pattern of gonadotrophin‐releasing hormone secretion, a neurohormone that stimulates pituitary gonadotrophin secretion. Until 2000, a complementary inhibitor of pituitary gonadotrophin secretion had not been identified. At this time, a novel, avian hypothalamic peptide capable of inhibiting gonadotrophin secretion in cultured quail pituitary cells was uncovered and named gonadotrophin‐inhibitory hormone (GnIH). Subsequently, the presence and functional role for the mammalian orthologue of GnIH, RFamide‐related peptide, (RFRP‐3), was examined, confirming a conserved role for this peptide across several rodent species. To date, a similar distribution and functional role for RFRP‐3 have been observed across all mammals investigated, including humans. This overview summarises the role that RFRP‐3 plays in mammals and considers the implications and opportunities for further study with respect to reproductive physiology and the neural control of sexual behaviour and motivation.


Frontiers in Neuroscience | 2013

Review: regulatory mechanisms of gonadotropin-inhibitory hormone (GnIH) synthesis and release in photoperiodic animals

Kazuyoshi Tsutsui; Takayoshi Ubuka; George E. Bentley; Lance J. Kriegsfeld

Gonadotropin-inhibitory hormone (GnIH) is a novel hypothalamic neuropeptide that was discovered in quail as an inhibitory factor for gonadotropin release. GnIH inhibits gonadotropin synthesis and release in birds through actions on gonadotropin-releasing hormone (GnRH) neurons and gonadotropes, mediated via the GnIH receptor (GnIH-R), GPR147. Subsequently, GnIH was identified in mammals and other vertebrates. As in birds, mammalian GnIH inhibits gonadotropin secretion, indicating a conserved role for this neuropeptide in the control of the hypothalamic-pituitary-gonadal (HPG) axis across species. Identification of the regulatory mechanisms governing GnIH expression and release is important in understanding the physiological role of the GnIH system. A nocturnal hormone, melatonin, appears to act directly on GnIH neurons through its receptor to induce expression and release of GnIH in quail, a photoperiodic bird. Recently, a similar, but opposite, action of melatonin on the inhibition of expression of mammalian GnIH was shown in hamsters and sheep, photoperiodic mammals. These results in photoperiodic animals demonstrate that GnIH expression is photoperiodically modulated via a melatonin-dependent process. Recent findings indicate that GnIH may be a mediator of stress-induced reproductive disruption in birds and mammals, pointing to a broad role for this neuropeptide in assessing physiological state and modifying reproductive effort accordingly. This paper summarizes the advances made in our knowledge regarding the regulation of GnIH synthesis and release in photoperiodic birds and mammals. This paper also discusses the neuroendocrine integration of environmental signals, such as photoperiods and stress, and internal signals, such as GnIH, melatonin, and glucocorticoids, to control avian and mammalian reproduction.


Brain Research | 2010

Recent studies of gonadotropin-inhibitory hormone (GnIH) in the mammalian hypothalamus, pituitary and gonads

George E. Bentley; Kazuyoshi Tsutsui; Lance J. Kriegsfeld

The hypothalamo-pituitary-gonadal (HPG) axis integrates internal and external cues via a balance of stimulatory and inhibitory neurochemical systems to time reproductive activity. The cumulative output of these positive and negative modulators drives secretion of gonadotropin-releasing hormone (GnRH), a neuropeptide that causes pituitary gonadotropin synthesis and secretion. Ten years ago, Tsutsui and colleagues discovered a peptide in quail hypothalamus that is capable of inhibiting gonadotropin secretion in cultured quail pituitary cells. Later studies by a variety of researchers examined the presence and functional role for the mammalian ortholog of GnIH. To date, GnIH exhibits a similar distribution and functional role in all mammals investigated, including humans. This overview summarizes the role of GnIH in modulation of mammalian reproductive physiology and suggests avenues for further study by those interested in the neuroendocrine control of reproductive physiology and sexual behavior.


Journal of Biological Rhythms | 2010

Photoperiod and Reproductive Condition Are Associated with Changes in RFamide- Related Peptide (RFRP) Expression in Syrian Hamsters (Mesocricetus auratus)

Alex O. Mason; Sean Duffy; Sheng Zhao; Takayoshi Ubuka; George E. Bentley; Kazuyoshi Tsutsui; Rae Silver; Lance J. Kriegsfeld

To conserve scarce energetic resources during winter, seasonal breeders inhibit reproduction and other nonessential behavioral and physiological processes. Reproductive cessation is initiated in response to declining day lengths, a stimulus represented centrally as a long-duration melatonin signal. The melatonin signal is not decoded by the reproductive axis directly, but by an unidentified neurochemical system upstream of gonadotropin-releasing hormone (GnRH). The dorsomedial nucleus of the hypothalamus (DMH) has been implicated in seasonal changes in reproductive function in Syrian hamsters (Mesocricetus auratus), although the specific-cell phenotype decoding photoperiodic information remains unknown. RFamide-related peptide (RFRP; the mammalian homolog of the gonadotropin-inhibitory hormone (GnIH) gene identified in birds) has emerged as a potent inhibitory regulator of the reproductive axis and, significantly, its expression is localized to cell bodies of the DMH in rodents. In the present study, the authors explored the relationship between RFRP expression, photoperiod exposure, and reproductive condition/hormonal status. In male hamsters that respond to short days with reproductive inhibition, RFRP-ir and mRNA expression are markedly reduced relative to long-day animals. Replacement of testosterone in short-day animals did not affect this response, suggesting that alterations in RFRP expression are not a result of changing sex steroid concentrations. A subset of the hamster population that ignores day length cues and remains reproductively competent in short days (nonresponders) exhibits RFRP-ir expression comparable to long-day hamsters. Analysis of cell body and fiber density suggests a potential interplay between peptide production and release rate in differentially regulating the reproductive axis during early and late stages of reproductive regression. Together, the present findings indicate that photoperiod-induced suppression of reproduction is associated with changes in RFRP and mRNA expression, providing opportunity for further exploration on the role that RFRP plays in this process.

Collaboration


Dive into the Lance J. Kriegsfeld's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory E. Demas

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Sabra L. Klein

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Randy J. Nelson

The Ohio State University Wexner Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irving Zucker

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sheng Zhao

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge