Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George F. Widhopf is active.

Publication


Featured researches published by George F. Widhopf.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a

Tetsuya Fukuda; Liguang Chen; Tomoyuki Endo; Li Tang; Desheng Lu; Januario E. Castro; George F. Widhopf; Laura Z. Rassenti; Mark J. Cantwell; Charles Prussak; Dennis A. Carson; Thomas J. Kipps

We examined the sera of six patients before and after i.v. infusions of autologous chronic lymphocytic leukemia (CLL) cells transduced ex vivo with an adenovirus encoding CD154 (Ad-CD154). Five patients made high-titer antibodies against adenovirus and three made IgG reactive with a leukemia-associated surface antigen, which we identified as ROR1. Anti-ROR1 antibodies were not detected in the sera of untreated patients. We generated anti-ROR1 mAbs and found they reacted specifically with the CLL cells of all patients, but not with nonleukemic leukocytes, a wide variety of normal adult tissues, or blood mononuclear cells, including CD5+ B cells of healthy adults. ROR1 could bind Wnt5a, which induced activation of NF-κB when coexpressed with ROR1 in HEK293 cells and enhanced the survival of CLL cells in vitro, an effect that could be neutralized by posttreatment anti-ROR1 antisera. We conclude that patients with CLL can break immune tolerance to ROR1, which is an oncofetal surface antigen and survival-signaling receptor in this neoplastic disease.


Journal of Immunology | 2001

Normal B Cells Express 51p1-Encoded Ig Heavy Chains That Are Distinct From Those Expressed by Chronic Lymphocytic Leukemia B Cells

George F. Widhopf; Thomas J. Kipps

51p1 is an allele of VH1-69 that frequently is expressed by chronic lymphocytic leukemia (CLL) B cells with little or no somatic mutation. The rearranged 51p1 genes expressed by CLL B cells have a distinctive use of D segments D3-3/DXP4 and D3-10/DXP′1, a favored use of JH6, and a longer third complementarity-determining region than the rearranged Ig genes used by CLL B cells that express VH1 genes other than VH1-69. We examined the 51p1-encoded Ig expressed by blood B cells of healthy donors. In contrast to the infrequent use of JH4 by 51p1-expressing CLL (e.g., 4%), 36% of the rearranged 51p1 sequences from normal blood B cells used JH4. Furthermore, the D segment use of the rearranged 51p1 sequences from normal blood B cells was not restricted, but reflected the D segment use of nonselected IgH of normal B cells. Finally, the mean length of the third complementarity-determining region for the 51p1 genes of normal blood B cells was 14.6 ± 4.3 (SD) codons. This is significantly shorter than that noted for 51p1-expressing CLL B cells (18.8 ± 3.2; p < 0.0001, n = 51). This study demonstrates that the 51p1-encoded IgH expressed in CLL are not representative of the 51p1-encoded IgH expressed by normal blood B cells, indicating that CLL B cells express IgH that are distinctive from those found in the normal adult blood B cell repertoire.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Ovarian cancer stem cells express ROR1, which can be targeted for anti–cancer-stem-cell therapy

Suping Zhang; Bing Cui; Hsien Lai; Grace Liu; Emanuela M. Ghia; George F. Widhopf; Zhuhong Zhang; Christina Wu; Liguang Chen; Rongrong Wu; Richard Schwab; Dennis A. Carson; Thomas J. Kipps

Significance This study demonstrates that the oncoembryonic surface antigen, receptor tyrosine kinase-like orphan receptor 1 (ROR1), is expressed on human ovarian cancer stem cells (CSCs), on which it seems to play a functional role in promoting migration/invasion or spheroid formation in vitro and tumor engraftment in immune-deficient mice. Treatment with a humanized mAb specific for ROR1 (UC-961) could inhibit the capacity of ovarian cancer cells to migrate, form spheroids, or engraft immune-deficient mice. Moreover, such treatment inhibited the growth of tumor xenografts, which in turn had a reduced capacity to engraft immune-deficient mice and were relatively depleted of cells with features of CSC, suggesting that treatment with UC-961 could impair CSC renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which may be targeted for anti-CSC therapy. Although initially responsive to chemotherapy, many patients with ovarian cancer subsequently develop relapsed and potentially fatal metastatic disease, which is thought to develop from cancer stem cells (CSCs) that are relatively resistant to conventional therapy. Here, we show that CSCs express a type I receptor tyrosine kinase-like orphan receptor (ROR1), which is expressed during embryogenesis and by many different cancers, but not normal postpartum tissues. Ovarian cancers with high levels of ROR1 had stem cell-like gene-expression signatures. Furthermore, patients with ovarian cancers with high levels of ROR1 had higher rates of relapse and a shorter median survival than patients with ovarian cancers that expressed low-to-negligible amounts of ROR1. We found that ROR1-positive (ROR1+) cells isolated from primary tumor-derived xenografts (PDXs) also expressed aldehyde dehydrogenase 1 (ALDH1) and had a greater capacity to form spheroids and to engraft immune-deficient mice than did ROR1-negative (ROR1Neg) ovarian cancer cells isolated from the same tumor population. Treatment with UC-961, an anti-ROR1 mAb, or shRNA silencing of ROR1 inhibited expression of the polycomb ring-finger oncogene, Bmi-1, and other genes associated with the epithelial–mesenchymal transition. Moreover, shRNA silencing of ROR1, depletion of ROR1+ cells, or treatment with UC-961 impaired the capacity of ovarian cancer cells to form spheroids or tumor xenografts. More importantly, treatment with anti-ROR1 affected the capacity of the xenograft to reseed a virgin mouse, indicating that targeting ROR1 may affect CSC self-renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which contributes to their capacity to form tumors, making ROR1 a potential target for the therapy of patients with ovarian cancer.


Cancer Research | 2013

Targeting ROR1 Inhibits Epithelial-Mesenchymal Transition and Metastasis

Bing Cui; Suping Zhang; Liguang Chen; Jianqiang Yu; George F. Widhopf; Jessie-F. Fecteau; Laura Z. Rassenti; Thomas J. Kipps

Metastasis is responsible for 90% of cancer-related deaths. Strategies are needed that can inhibit the capacity of cancer cells to migrate across the anatomic barriers and colonize distant organs. Here, we show an association between metastasis and expression of a type I receptor tyrosine kinase-like orphan receptor, ROR1, which is expressed during embryogenesis and by various cancers, but not by normal postpartum tissues. We found that expression of ROR1 associates with the epithelial-mesenchymal transition (EMT), which occurs during embryogenesis and cancer metastasis. Breast adenocarcinomas expressing high levels of ROR1 were more likely to have gene expression signatures associated with EMT and had higher rates of relapse and metastasis than breast adenocarcinomas expressing low levels of ROR1. Suppressing expression of ROR1 in metastasis-prone breast cancer cell lines, MDA-MB-231, HS-578T, or BT549, attenuated expression of proteins associated with EMT (e.g., vimentin, SNAIL-1/2, and ZEB1), enhanced expression of E-cadherin, epithelial cytokeratins (e.g., CK-19), and tight junction proteins (e.g., ZO-1), and impaired their migration/invasion capacity in vitro and the metastatic potential of MDA-MB-231 cells in immunodeficient mice. Conversely, transfection of MCF-7 cells to express ROR1 reduced expression of E-cadherin and CK-19, but enhanced the expression of SNAIL-1/2 and vimentin. Treatment of MDA-MB-231 with a monoclonal antibody specific for ROR1 induced downmodulation of vimentin and inhibited cancer cell migration and invasion in vitro and tumor metastasis in vivo. Collectively, this study indicates that ROR1 may regulate EMT and metastasis and that antibodies targeting ROR1 can inhibit cancer progression and metastasis.


Blood | 2008

Use of IGHV3-21 in chronic lymphocytic leukemia is associated with high-risk disease and reflects antigen-driven, post-germinal center leukemogenic selection.

Emanuela M. Ghia; Sonia Jain; George F. Widhopf; Laura Z. Rassenti; Michael J. Keating; William G. Wierda; John G. Gribben; Jennifer R. Brown; Kanti R. Rai; John C. Byrd; Neil E. Kay; Thomas J. Kipps

We examined the chronic lymphocytic leukemia (CLL) cells of 2457 patients evaluated by the CLL Research Consortium (CRC) and found that 63 (2.6%) expressed immunoglobulin (Ig) encoded by the Ig heavy-chain-variable-region gene (IGHV), IGHV3-21. We identified the amino acid sequence DANGMDV (motif-1) or DPSFYSSSWTLFDY (motif-2) in the Ig heavy-chain (IgH) third complementarity-determining region (HCDR3) of IgH, respectively, used by 25 or 3 cases. The IgH with HCDR3 motif-1 or motif-2, respectively, was paired with Ig light chains (IgL) encoded by IGLV3-21 or IGKV3-20, suggesting that these Ig had been selected for binding to conventional antigen(s). Cases that had HCDR3 motif-1 had a median time from diagnosis to initial therapy comparable with that of cases without a defined HCDR3 motif, as did cases that used mutated IGHV3-21 (n = 27) versus unmutated IGHV3-21 (n = 30). Of 7 examined cases that used Ig encoded by IGHV3-21/IGLV3-21, we found that 5 had a functionally rearranged IGKV allele that apparently had incurred antigendriven somatic mutations and subsequent rearrangement with KDE. This study reveals that CLL cells expressing IGHV3-21/IGLV3-21 most likely were derived from B cells that had experienced somatic mutation and germinal-center maturation in an apparent antigen-driven immune response before undergoing Ig-receptor editing and after germinal-center leukemogenic selection.


Proceedings of the National Academy of Sciences of the United States of America | 2010

B-cell activating factor and v-Myc myelocytomatosis viral oncogene homolog (c-Myc) influence progression of chronic lymphocytic leukemia

Weizhou Zhang; Arnon P. Kater; George F. Widhopf; Han-Yu Chuang; Thomas Enzler; Danelle F. James; Maxim Poustovoitov; Ping-Hui Tseng; Siegfried Janz; Carl K. Hoh; Harvey R. Herschman; Michael Karin; Thomas J. Kipps

Mice bearing a v-Myc myelocytomatosis viral oncogene homolog (c-Myc) transgene controlled by an Ig-alpha heavy-chain enhancer (iMycCα mice) rarely develop lymphomas but instead have increased rates of memory B-cell turnover and impaired antibody responses to antigen. We found that male progeny of iMycCα mice mated with mice transgenic (Tg) for CD257 (B-cell activating factor, BAFF) developed CD5+ B-cell leukemia resembling human chronic lymphocytic leukemia (CLL), which also displays a male gender bias. Surprisingly, leukemic cells of Myc/Baff Tg mice expressed higher levels of c-Myc than did B cells of iMycCα mice. We found that CLL cells of many patients with progressive disease also expressed high amounts of c-MYC, particularly CLL cells whose survival depends on nurse-like cells (NLC), which express high-levels of BAFF. We find that BAFF could enhance CLL-cell expression of c-MYC via activation the canonical IκB kinase (IKK)/NF-κB pathway. Inhibition of the IKK/NF-κB pathway in mouse or human leukemia cells blocked the capacity of BAFF to induce c-MYC or promote leukemia-cell survival and significantly impaired disease progression in Myc/Baff Tg mice. This study reveals an important relationship between BAFF and c-MYC in CLL which may affect disease development and progression, and suggests that inhibitors of the canonical NF-κB pathway may be effective in treatment of patients with this disease.


Journal of Clinical Investigation | 2016

Wnt5a induces ROR1/ROR2 heterooligomerization to enhance leukemia chemotaxis and proliferation

Jian Yu; Liguang Chen; Bing Cui; George F. Widhopf; Zhouxin Shen; Rongrong Wu; Ling Zhang; Suping Zhang; Steven P. Briggs; Thomas J. Kipps

Evolutionarily conserved receptor tyrosine kinase–like orphan receptor-1 and -2 (ROR1/2) are considered distinct receptors for Wnt5a and are implicated in noncanonical Wnt signaling in organogenesis and cancer metastasis. We found that Wnt5a enhanced proliferation and migration of chronic lymphocytic leukemia (CLL) cells and that these effects were blocked by the humanized anti-ROR1 mAb cirmtuzumab (UC-961). Treatment of CLL cells with Wnt5a induced ROR1 to oligomerize with ROR2 and recruit guanine exchange factors (GEFs), which activated Rac1 and RhoA; siRNA-mediated silencing of either ROR1 or ROR2 or treatment with UC-961 inhibited these effects. Using the ROR1-deficient CLL cell line MEC1, we demonstrated that ectopic ROR1 expression induced ROR1/ROR2 heterooligomers, which recruited GEFs, and enhanced proliferation, cytokine-directed migration, and engraftment potential of MEC1 cells in immune-deficient mice. Notably, treatment with UC-961 inhibited engraftment of ROR1+ leukemia cells in immune-competent ROR1-transgenic mice. Molecular analysis revealed that the extracellular Kringle domain is required for ROR1/ROR2 heterooligomerization and the cysteine-rich domain or intracellular proline-rich domain is required for Wnt5a-induced recruitment of GEFs to ROR1/ROR2. This study identifies an interaction between ROR1 and ROR2 that is required for Wnt5a signaling that promotes leukemia chemotaxis and proliferation.


Blood | 2012

Recombinant antibodies encoded by IGHV1-69 react with pUL32, a phosphoprotein of cytomegalovirus and B-cell superantigen

Christoph Steininger; George F. Widhopf; Emanuela M. Ghia; Christopher S. Morello; Katrina Vanura; Rebecca L. Sanders; Deborah H. Spector; Don Guiney; Ulrich Jäger; Thomas J. Kipps

Leukemia cells from patients with chronic lymphocytic leukemia (CLL) express a highly restricted immunoglobulin heavy variable chain (IGHV) repertoire, suggesting that a limited set of antigens reacts with leukemic cells. Here, we evaluated the reactivity of a panel of different CLL recombinant antibodies (rAbs) encoded by the most commonly expressed IGHV genes with a panel of selected viral and bacterial pathogens. Six different CLL rAbs encoded by IGHV1-69 or IGHV3-21, but not a CLL rAb encoded by IGHV4-39 genes, reacted with a single protein of human cytomegalovirus (CMV). The CMV protein was identified as the large structural phosphoprotein pUL32. In contrast, none of the CLL rAbs bound to any other structure of CMV, adenovirus serotype 2, Salmonella enterica serovar Typhimurium, or of cells used for propagation of these microorganisms. Monoclonal antibodies or humanized rAbs of irrelevant specificity to pUL32 did not react with any of the proteins present in the different lysates. Still, rAbs encoded by a germ line IGHV1-69 51p1 allele from CMV-seropositive and -negative adults also reacted with pUL32. The observed reactivity of multiple different CLL rAbs and natural antibodies from CMV-seronegative adults with pUL32 is consistent with the properties of a superantigen.


Blood | 2009

Chronic lymphocytic leukemia of Emu-TCL1 transgenic mice undergoes rapid cell turnover that can be offset by extrinsic CD257 to accelerate disease progression.

Thomas Enzler; Arnon P. Kater; Weizhou Zhang; George F. Widhopf; Han-Yu Chuang; Jason T.C. Lee; Esther Avery; Carlo M. Croce; Michael Karin; Thomas J. Kipps

Results of heavy-water labeling studies have challenged the notion that chronic lymphocytic leukemia (CLL) represents an accumulation of noncycling B cells. We examined leukemia cell turnover in Emu-TCL1 transgenic (TCL1-Tg) mice, which develop a CLL-like disease at 8 to 12 months of age. We found that leukemia cells in these mice not only had higher proportions of proliferating cells but also apoptotic cells than did nonleukemic lymphocytes. We crossed TCL1-Tg with BAFF-Tg mice, which express high levels of CD257. TCL1 x BAFF-Tg mice developed CLL-like disease at a significantly younger age and had more rapid disease progression and shorter survival than TCL1-Tg mice. Leukemia cells of TCL1 x BAFF-Tg mice had similar proportions of proliferating cells, but fewer proportions of dying cells, than did the CLL cells of TCL1-Tg mice. Moreover, leukemia cells from either TCL1 x BAFF-Tg or TCL1-Tg mice produced more aggressive disease when transferred into BAFF-Tg mice than into wild-type (WT) mice. Neutralization of CD257 resulted in rapid reduction in circulating leukemia cells. These results indicate that the leukemia cells of TCL1-Tg mice undergo high levels of spontaneous apoptosis that is offset by relatively high rates of leukemia cell proliferation, which might allow for acquisition of mutations that contribute to disease evolution.


Proceedings of the National Academy of Sciences of the United States of America | 2014

ROR1 can interact with TCL1 and enhance leukemogenesis in Eμ-TCL1 transgenic mice.

George F. Widhopf; Bing Cui; Emanuela M. Ghia; Liguang Chen; Karen Messer; Zhouxin Shen; Steven P. Briggs; Carlo M. Croce; Thomas J. Kipps

Significance Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a type 1 protein expressed on chronic lymphocytic leukemia (CLL) B cells, but not on normal postpartum tissues. This study demonstrates that ROR1 can contribute to leukemogenesis and can bind to T-cell leukemia 1 (TCL1), a known coactivator of AKT. ROR1 can accelerate leukemogenesis when expressed together TCL1, leading to increased activation of AKT and enhanced leukemia-cell proliferation and resistance to apoptosis. Treatment of ROR1-expressing leukemia cells with an anti-ROR1 mAb could down-modulate ROR1, reduce phospho-AKT, and impair their capacity to engraft syngeneic mice. Collectively, our data demonstrate that ROR1 accelerates development/progression of leukemia and may be targeted for therapy of patients with CLL. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncoembryonic antigen found on chronic lymphocytic leukemia (CLL) B cells, but not on normal adult tissues. We generated transgenic (Tg) mice with human ROR1 regulated by the murine Ig promoter/enhancer. In contrast to nontransgenic littermates, such animals had B-cell–restricted expression of ROR1 and could develop clonal expansions of ROR1brightCD5+B220low B cells resembling human CLL at ≥15 mo of age. Because immune-precipitation and mass spectrometry studies revealed that ROR1 could complex with T-cell leukemia 1 (TCL1) in CLL, we crossed these animals with Eµ-TCL1-Tg (TCL1) mice. Progeny with both transgenes (ROR1 × TCL1) developed CD5+B220low B-cell lymphocytosis and leukemia at a significantly younger median age than did littermates with either transgene alone. ROR1 × TCL1 leukemia B cells had higher levels of phospho-AKT than TCL1 leukemia cells and expressed high levels of human ROR1, which we also found complexed with TCL1. Transcriptome analyses revealed that ROR1 × TCL1 leukemia cells had higher expression of subnetworks implicated in embryonic and tumor-cell proliferation, but lower expression of subnetworks involved in cell–cell adhesion or cell death than did TCL1 leukemia cells. ROR1 × TCL1 leukemia cells also had higher proportions of Ki-67–positive cells, lower proportions of cells undergoing spontaneous apoptosis, and produced more aggressive disease upon adoptive transfer than TCL1 leukemia cells. However, treatment with an anti-ROR1 mAb resulted in ROR1 down-modulation, reduced phospho-AKT, and impaired engraftment of ROR1 × TCL1 leukemia cells. Our data demonstrate that ROR1 accelerates development/progression of leukemia and may be targeted for therapy of patients with CLL.

Collaboration


Dive into the George F. Widhopf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liguang Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Bing Cui

University of California

View shared research outputs
Top Co-Authors

Avatar

Jian Yu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suping Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

John G. Gribben

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Kanti R. Rai

North Shore-LIJ Health System

View shared research outputs
Researchain Logo
Decentralizing Knowledge