Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liguang Chen is active.

Publication


Featured researches published by Liguang Chen.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a

Tetsuya Fukuda; Liguang Chen; Tomoyuki Endo; Li Tang; Desheng Lu; Januario E. Castro; George F. Widhopf; Laura Z. Rassenti; Mark J. Cantwell; Charles Prussak; Dennis A. Carson; Thomas J. Kipps

We examined the sera of six patients before and after i.v. infusions of autologous chronic lymphocytic leukemia (CLL) cells transduced ex vivo with an adenovirus encoding CD154 (Ad-CD154). Five patients made high-titer antibodies against adenovirus and three made IgG reactive with a leukemia-associated surface antigen, which we identified as ROR1. Anti-ROR1 antibodies were not detected in the sera of untreated patients. We generated anti-ROR1 mAbs and found they reacted specifically with the CLL cells of all patients, but not with nonleukemic leukocytes, a wide variety of normal adult tissues, or blood mononuclear cells, including CD5+ B cells of healthy adults. ROR1 could bind Wnt5a, which induced activation of NF-κB when coexpressed with ROR1 in HEK293 cells and enhanced the survival of CLL cells in vitro, an effect that could be neutralized by posttreatment anti-ROR1 antisera. We conclude that patients with CLL can break immune tolerance to ROR1, which is an oncofetal surface antigen and survival-signaling receptor in this neoplastic disease.


PLOS ONE | 2012

ROR1 Is Expressed in Human Breast Cancer and Associated with Enhanced Tumor-Cell Growth

Suping Zhang; Liguang Chen; Bing Cui; Han-Yu Chuang; Jianqiang Yu; Jessica Wang-Rodriguez; Li Tang; George Chen; Grzegorz Wladyslaw Basak; Thomas J. Kipps

Receptor-tyrosine-kinase-like orphan receptor 1 (ROR1) is expressed during embryogenesis and by certain leukemias, but not by normal adult tissues. Here we show that the neoplastic cells of many human breast cancers express the ROR1 protein and high-level expression of ROR1 in breast adenocarcinoma was associated with aggressive disease. Silencing expression of ROR1 in human breast cancer cell lines found to express this protein impaired their growth in vitro and also in immune-deficient mice. We found that ROR1 could interact with casein kinase 1 epsilon (CK1ε) to activate phosphoinositide 3-kinase-mediated AKT phosphorylation and cAMP-response-element-binding protein (CREB), which was associated with enhanced tumor-cell growth. Wnt5a, a ligand of ROR1, could induce ROR1-dependent signaling and enhance cell growth. This study demonstrates that ROR1 is expressed in human breast cancers and has biological and clinical significance, indicating that it may be a potential target for breast cancer therapy.


Blood | 2014

MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia

Bing Cui; Liguang Chen; Suping Zhang; Marek Mraz; Jessie F. Fecteau; Jian Yu; Emanuela M. Ghia; Ling Zhang; Lei Bao; Laura Z. Rassenti; Karen Messer; George A. Calin; Carlo M. Croce; Thomas J. Kipps

High-level leukemia cell expression of micro-RNA 155 (miR-155) is associated with more aggressive disease in patients with chronic lymphocytic leukemia (CLL), including those cases with a low-level expression of ζ-chain-associated protein of 70 kD. CLL with high-level miR-155 expressed lower levels of Src homology-2 domain-containing inositol 5-phosphatase 1 and were more responsive to B-cell receptor (BCR) ligation than CLL with low-level miR-155. Transfection with miR-155 enhanced responsiveness to BCR ligation, whereas transfection with a miR-155 inhibitor had the opposite effect. CLL in lymphoid tissue expressed higher levels of miR155HG than CLL in the blood of the same patient. Also, isolated CD5(bright)CXCR4(dim) cells, representing CLL that had been newly released from the microenvironment, expressed higher levels of miR-155 and were more responsive to BCR ligation than isolated CD5(dim)CXCR4(bright) cells of the same patient. Treatment of CLL or normal B cells with CD40-ligand or B-cell-activating factor upregulated miR-155 and enhanced sensitivity to BCR ligation, effects that could be blocked by inhibitors to miR-155. This study demonstrates that the sensitivity to BCR ligation can be enhanced by high-level expression of miR-155, which in turn can be induced by crosstalk within the tissue microenvironment, potentially contributing to its association with adverse clinical outcome in patients with CLL.


American Journal of Pathology | 2012

The Onco-Embryonic Antigen ROR1 Is Expressed by a Variety of Human Cancers

Suping Zhang; Liguang Chen; Jessica Wang-Rodriguez; Ling Zhang; Bing Cui; Wendy L. Frankel; Rongrong Wu; Thomas J. Kipps

ROR1 is an orphan-receptor tyrosine-kinase-like surface antigen that is expressed by many tissues during embryogenesis, some B-cell malignancies, and various cancer cell lines but not by virtually all normal adult tissues. Here, we report that large proportions of many different human cancers also express ROR1, particularly those cancers that have high-grade histology. Primary cancers that expressed ROR1 more commonly expressed high levels of phosphorylated AKT (p-AKT) and phosphorylated cAMP response element binding-factor (p-CREB) than similar cancers that lacked expression of ROR1. Induced expression of ROR1 could enhance basal p-AKT and p-CREB levels and could promote the growth of a cancer cell line, MEC1. Conversely, silencing ROR1 resulted in lower levels of p-AKT and p-CREB, which was associated with impaired tumor cell growth. In summary, this study found that many different human cancers express ROR1 and that ROR1 may play a functional role in promoting tumor cell growth, suggesting that this orphan-receptor tyrosine-kinase-like protein may be a potential target for therapy directed against a variety of human cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Ovarian cancer stem cells express ROR1, which can be targeted for anti–cancer-stem-cell therapy

Suping Zhang; Bing Cui; Hsien Lai; Grace Liu; Emanuela M. Ghia; George F. Widhopf; Zhuhong Zhang; Christina Wu; Liguang Chen; Rongrong Wu; Richard Schwab; Dennis A. Carson; Thomas J. Kipps

Significance This study demonstrates that the oncoembryonic surface antigen, receptor tyrosine kinase-like orphan receptor 1 (ROR1), is expressed on human ovarian cancer stem cells (CSCs), on which it seems to play a functional role in promoting migration/invasion or spheroid formation in vitro and tumor engraftment in immune-deficient mice. Treatment with a humanized mAb specific for ROR1 (UC-961) could inhibit the capacity of ovarian cancer cells to migrate, form spheroids, or engraft immune-deficient mice. Moreover, such treatment inhibited the growth of tumor xenografts, which in turn had a reduced capacity to engraft immune-deficient mice and were relatively depleted of cells with features of CSC, suggesting that treatment with UC-961 could impair CSC renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which may be targeted for anti-CSC therapy. Although initially responsive to chemotherapy, many patients with ovarian cancer subsequently develop relapsed and potentially fatal metastatic disease, which is thought to develop from cancer stem cells (CSCs) that are relatively resistant to conventional therapy. Here, we show that CSCs express a type I receptor tyrosine kinase-like orphan receptor (ROR1), which is expressed during embryogenesis and by many different cancers, but not normal postpartum tissues. Ovarian cancers with high levels of ROR1 had stem cell-like gene-expression signatures. Furthermore, patients with ovarian cancers with high levels of ROR1 had higher rates of relapse and a shorter median survival than patients with ovarian cancers that expressed low-to-negligible amounts of ROR1. We found that ROR1-positive (ROR1+) cells isolated from primary tumor-derived xenografts (PDXs) also expressed aldehyde dehydrogenase 1 (ALDH1) and had a greater capacity to form spheroids and to engraft immune-deficient mice than did ROR1-negative (ROR1Neg) ovarian cancer cells isolated from the same tumor population. Treatment with UC-961, an anti-ROR1 mAb, or shRNA silencing of ROR1 inhibited expression of the polycomb ring-finger oncogene, Bmi-1, and other genes associated with the epithelial–mesenchymal transition. Moreover, shRNA silencing of ROR1, depletion of ROR1+ cells, or treatment with UC-961 impaired the capacity of ovarian cancer cells to form spheroids or tumor xenografts. More importantly, treatment with anti-ROR1 affected the capacity of the xenograft to reseed a virgin mouse, indicating that targeting ROR1 may affect CSC self-renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which contributes to their capacity to form tumors, making ROR1 a potential target for the therapy of patients with ovarian cancer.


Cancer Research | 2013

Targeting ROR1 Inhibits Epithelial-Mesenchymal Transition and Metastasis

Bing Cui; Suping Zhang; Liguang Chen; Jianqiang Yu; George F. Widhopf; Jessie-F. Fecteau; Laura Z. Rassenti; Thomas J. Kipps

Metastasis is responsible for 90% of cancer-related deaths. Strategies are needed that can inhibit the capacity of cancer cells to migrate across the anatomic barriers and colonize distant organs. Here, we show an association between metastasis and expression of a type I receptor tyrosine kinase-like orphan receptor, ROR1, which is expressed during embryogenesis and by various cancers, but not by normal postpartum tissues. We found that expression of ROR1 associates with the epithelial-mesenchymal transition (EMT), which occurs during embryogenesis and cancer metastasis. Breast adenocarcinomas expressing high levels of ROR1 were more likely to have gene expression signatures associated with EMT and had higher rates of relapse and metastasis than breast adenocarcinomas expressing low levels of ROR1. Suppressing expression of ROR1 in metastasis-prone breast cancer cell lines, MDA-MB-231, HS-578T, or BT549, attenuated expression of proteins associated with EMT (e.g., vimentin, SNAIL-1/2, and ZEB1), enhanced expression of E-cadherin, epithelial cytokeratins (e.g., CK-19), and tight junction proteins (e.g., ZO-1), and impaired their migration/invasion capacity in vitro and the metastatic potential of MDA-MB-231 cells in immunodeficient mice. Conversely, transfection of MCF-7 cells to express ROR1 reduced expression of E-cadherin and CK-19, but enhanced the expression of SNAIL-1/2 and vimentin. Treatment of MDA-MB-231 with a monoclonal antibody specific for ROR1 induced downmodulation of vimentin and inhibited cancer cell migration and invasion in vitro and tumor metastasis in vivo. Collectively, this study indicates that ROR1 may regulate EMT and metastasis and that antibodies targeting ROR1 can inhibit cancer progression and metastasis.


Journal of Clinical Investigation | 2016

Wnt5a induces ROR1/ROR2 heterooligomerization to enhance leukemia chemotaxis and proliferation

Jian Yu; Liguang Chen; Bing Cui; George F. Widhopf; Zhouxin Shen; Rongrong Wu; Ling Zhang; Suping Zhang; Steven P. Briggs; Thomas J. Kipps

Evolutionarily conserved receptor tyrosine kinase–like orphan receptor-1 and -2 (ROR1/2) are considered distinct receptors for Wnt5a and are implicated in noncanonical Wnt signaling in organogenesis and cancer metastasis. We found that Wnt5a enhanced proliferation and migration of chronic lymphocytic leukemia (CLL) cells and that these effects were blocked by the humanized anti-ROR1 mAb cirmtuzumab (UC-961). Treatment of CLL cells with Wnt5a induced ROR1 to oligomerize with ROR2 and recruit guanine exchange factors (GEFs), which activated Rac1 and RhoA; siRNA-mediated silencing of either ROR1 or ROR2 or treatment with UC-961 inhibited these effects. Using the ROR1-deficient CLL cell line MEC1, we demonstrated that ectopic ROR1 expression induced ROR1/ROR2 heterooligomers, which recruited GEFs, and enhanced proliferation, cytokine-directed migration, and engraftment potential of MEC1 cells in immune-deficient mice. Notably, treatment with UC-961 inhibited engraftment of ROR1+ leukemia cells in immune-competent ROR1-transgenic mice. Molecular analysis revealed that the extracellular Kringle domain is required for ROR1/ROR2 heterooligomerization and the cysteine-rich domain or intracellular proline-rich domain is required for Wnt5a-induced recruitment of GEFs to ROR1/ROR2. This study identifies an interaction between ROR1 and ROR2 that is required for Wnt5a signaling that promotes leukemia chemotaxis and proliferation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Targeting chronic lymphocytic leukemia cells with a humanized monoclonal antibody specific for CD44

Suping Zhang; Christina Wu; Jessie-F. Fecteau; Bing Cui; Liguang Chen; Ling Zhang; Rongrong Wu; Laura Z. Rassenti; Fitzgerald Lao; Stefan Weigand; Thomas J. Kipps

Chronic lymphocytic leukemia (CLL) cells express high levels of CD44, a cell-surface glycoprotein receptor for hyaluronic acid. We found that a humanized mAb specific for CD44 (RG7356) was directly cytotoxic for leukemia B cells, but had little effect on normal B cells. Moreover, RG7356 could induce CLL cells that expressed the zeta-associated protein of 70 kDa (ZAP-70) to undergo caspase-dependent apoptosis, independent of complement or cytotoxic effector cells. The cytotoxic effect of this mAb was not mitigated when the CLL cells were cocultured with mesenchymal stromal cells (MSCs) or hyaluronic acid or when they were stimulated via ligation of the B-cell receptor with anti-µ. RG7356 induced rapid internalization of CD44 on CLL cells at 37 °C, resulting in reduced expression of ZAP-70, which we found was complexed with CD44. Administration of this mAb at a concentration of 1 mg/kg to immune-deficient mice engrafted with human CLL cells resulted in complete clearance of engrafted leukemia cells. These studies indicate that this mAb might have therapeutic activity, particularly in patients with CLL that express ZAP-70.


Proceedings of the National Academy of Sciences of the United States of America | 2014

ROR1 can interact with TCL1 and enhance leukemogenesis in Eμ-TCL1 transgenic mice.

George F. Widhopf; Bing Cui; Emanuela M. Ghia; Liguang Chen; Karen Messer; Zhouxin Shen; Steven P. Briggs; Carlo M. Croce; Thomas J. Kipps

Significance Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a type 1 protein expressed on chronic lymphocytic leukemia (CLL) B cells, but not on normal postpartum tissues. This study demonstrates that ROR1 can contribute to leukemogenesis and can bind to T-cell leukemia 1 (TCL1), a known coactivator of AKT. ROR1 can accelerate leukemogenesis when expressed together TCL1, leading to increased activation of AKT and enhanced leukemia-cell proliferation and resistance to apoptosis. Treatment of ROR1-expressing leukemia cells with an anti-ROR1 mAb could down-modulate ROR1, reduce phospho-AKT, and impair their capacity to engraft syngeneic mice. Collectively, our data demonstrate that ROR1 accelerates development/progression of leukemia and may be targeted for therapy of patients with CLL. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncoembryonic antigen found on chronic lymphocytic leukemia (CLL) B cells, but not on normal adult tissues. We generated transgenic (Tg) mice with human ROR1 regulated by the murine Ig promoter/enhancer. In contrast to nontransgenic littermates, such animals had B-cell–restricted expression of ROR1 and could develop clonal expansions of ROR1brightCD5+B220low B cells resembling human CLL at ≥15 mo of age. Because immune-precipitation and mass spectrometry studies revealed that ROR1 could complex with T-cell leukemia 1 (TCL1) in CLL, we crossed these animals with Eµ-TCL1-Tg (TCL1) mice. Progeny with both transgenes (ROR1 × TCL1) developed CD5+B220low B-cell lymphocytosis and leukemia at a significantly younger median age than did littermates with either transgene alone. ROR1 × TCL1 leukemia B cells had higher levels of phospho-AKT than TCL1 leukemia cells and expressed high levels of human ROR1, which we also found complexed with TCL1. Transcriptome analyses revealed that ROR1 × TCL1 leukemia cells had higher expression of subnetworks implicated in embryonic and tumor-cell proliferation, but lower expression of subnetworks involved in cell–cell adhesion or cell death than did TCL1 leukemia cells. ROR1 × TCL1 leukemia cells also had higher proportions of Ki-67–positive cells, lower proportions of cells undergoing spontaneous apoptosis, and produced more aggressive disease upon adoptive transfer than TCL1 leukemia cells. However, treatment with an anti-ROR1 mAb resulted in ROR1 down-modulation, reduced phospho-AKT, and impaired engraftment of ROR1 × TCL1 leukemia cells. Our data demonstrate that ROR1 accelerates development/progression of leukemia and may be targeted for therapy of patients with CLL.


Blood | 2016

High-level ROR1 associates with accelerated disease-progression in chronic lymphocytic leukemia

Bing Cui; Emanuela M. Ghia; Liguang Chen; Laura Z. Rassenti; Christopher DeBoever; George F. Widhopf; Jian Yu; Donna Neuberg; William G. Wierda; Kanti R. Rai; Neil E. Kay; Jennifer R. Brown; Jeffrey A. Jones; John G. Gribben; Kelly A. Frazer; Thomas J. Kipps

ROR1 is an oncoembryonic orphan receptor found on chronic lymphocytic leukemia (CLL) B cells, but not on normal postpartum tissues. ROR1 is a receptor for Wnt5a that may complex with TCL1, a coactivator of AKT that is able to promote development of CLL. We found the CLL cells of a few patients expressed negligible ROR1 (ROR1Neg), but expressed TCL1A at levels comparable to those of samples that expressed ROR1 (ROR1Pos). Transcriptome analyses revealed that ROR1Neg cases generally could be distinguished from those that were ROR1Pos in unsupervised gene-expression clustering analysis. Gene-set enrichment analyses demonstrated that ROR1Neg CLL had lower expression and activation of AKT signaling pathways relative to ROR1Pos CLL, similar to what was noted for leukemia that respectively developed in TCL1 vs ROR1xTCL1 transgenic mice. In contrast to its effect on ROR1Pos CLL, Wnt5a did not enhance the proliferation, chemotaxis, or survival of ROR1Neg CLL. We examined the CLL cells from 1568 patients, which we randomly assigned to a training or validation set of 797 or 771 cases, respectively. Using recursive partitioning, we defined a threshold for ROR1 surface expression that could segregate samples of the training set into ROR1-Hi vs ROR1-Lo subgroups that differed significantly in their median treatment-free survival (TFS). Using this threshold, we found that ROR1-Hi cases had a significantly shorter median TFS and overall survival than ROR1-Lo cases in the validation set. These data demonstrate that expression of ROR1 may promote leukemia-cell activation and survival and enhance disease progression in patients with CLL.

Collaboration


Dive into the Liguang Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bing Cui

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suping Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

Jian Yu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Messer

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge