Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George J. Gunn is active.

Publication


Featured researches published by George J. Gunn.


Infection and Immunity | 2003

Lymphoid Follicle-Dense Mucosa at the Terminal Rectum Is the Principal Site of Colonization of Enterohemorrhagic Escherichia coli O157:H7 in the Bovine Host

Stuart W. Naylor; J. Christopher Low; Thomas E. Besser; Arvind Mahajan; George J. Gunn; M. C. Pearce; Iain J. McKendrick; David George Emslie Smith; David L. Gally

ABSTRACT Escherichia coli O157:H7 causes bloody diarrhea and potentially fatal systemic sequelae in humans. Cattle are most frequently identified as the primary source of infection, and E. coli O157:H7 generally colonizes the gastrointestinal tracts of cattle without causing disease. In this study, persistence and tropism were assessed for four different E. coli O157:H7 strains. Experimentally infected calves shed the organism for at least 14 days prior to necropsy. For the majority of these animals, as well as for a naturally colonized animal obtained from a commercial beef farm, the highest numbers of E. coli O157:H7 were found in the feces, with negative or significantly lower levels detected in lumen contents taken from the gastrointestinal tract. Detailed examination demonstrated that in these individuals the majority of tissue-associated bacteria were adherent to mucosal epithelium within a defined region extending up to 5 cm proximally from the recto-anal junction. The tissue targeted by E. coli O157:H7 was characterized by a high density of lymphoid follicles. Microcolonies of the bacterium were readily detected on the epithelium of this region by immunofluorescence microscopy. As a consequence of this specific distribution, E. coli O157:H7 was present predominately on the surface of the fecal stool. In contrast, other E. coli serotypes were present at consistent levels throughout the large intestine and were equally distributed in the stool. This is a novel tropism that may enhance dissemination both between animals and from animals to humans. The accessibility of this site may facilitate simple intervention strategies.


Epidemiology and Infection | 2005

Super-shedding cattle and the transmission dynamics of Escherichia coli O157

Louise Matthews; Iain J. McKendrick; Helen E. Ternent; George J. Gunn; Barti A. Synge; Mark E. J. Woolhouse

The prevalence of Escherichia coli O157 displays striking variability across the Scottish cattle population. On 78% of farms, in a cross-sectional survey of 952, no shedding of E. coli O157 was detected, but on a small proportion, approximately 2%, very high prevalences of infection were found (with 90-100% of pats sampled being positive). We ask whether this variation arises from the inherent stochasticity in transmission dynamics or whether it is a signature of underlying heterogeneities in the cattle population. A novel approach is taken whereby the cross-sectional data are viewed as providing independent snapshots of a dynamic process. Using maximum-likelihood methods to fit time-dependent epidemiological models to the data we obtain estimates for the rates of immigration and transmission of E. coli O157 infection - parameters which have not been previously quantified in the literature. A comparison of alternative model fits reveals that the variation in the prevalence data is best explained when a proportion of the cattle are assumed to transmit infection at much higher levels than the rest - the so-called super-shedders. Analysis of a second dataset, comprising samples taken from 32 farms at monthly intervals over a period of 1 year, additionally yields an estimate for the rate of recovery from infection. The pattern of prevalence displayed in the second dataset also strongly supports the super-shedder hypothesis.


Journal of Clinical Microbiology | 2007

Risk Factors for the Presence of High-Level Shedders of Escherichia coli O157 on Scottish Farms

Margo E. Chase-Topping; Iain J. McKendrick; M. C. Pearce; Peter MacDonald; Louise Matthews; Jo E. B. Halliday; Lesley Allison; Dave Fenlon; J. Christopher Low; George J. Gunn; Mark E. J. Woolhouse

ABSTRACT Escherichia coli O157 infections are the cause of sporadic or epidemic cases of often bloody diarrhea that can progress to hemolytic uremic syndrome (HUS), a systematic microvascular syndrome with predominately renal and neurological complications. HUS is responsible for most deaths associated with E. coli O157 infection. From March 2002 to February 2004, approximately 13,000 fecal pat samples from 481 farms with finishing/store cattle throughout Scotland were examined for the presence of E. coli O157. A total of 441 fecal pats from 91 farms tested positive for E. coli O157. From the positive samples, a point estimate for high-level shedders was identified using mixture distribution analysis on counts of E. coli O157. Models were developed based on the confidence interval surrounding this point estimate (high-level shedder, greater than 103 or greater than 104 CFU g−1 feces). The mean prevalence on high-level-shedding farms was higher than that on low-level-shedding farms. The presence of a high-level shedder on a farm was found to be associated with a high proportion of low-level shedding, consistent with the possibility of a higher level of transmission. Analysis of risk factors associated with the presence of a high-level shedder on a farm suggested the importance of the pathogen and individual host rather than the farm environment. The proportion of high-level shedders of phage 21/28 was higher than expected by chance. Management-related risk factors that were identified included the type of cattle (female breeding cattle) and cattle stress (movement and weaning), as opposed to environmental factors, such as water supply and feed.


Veterinary Journal | 2004

Modelling and costing BVD outbreaks in beef herds

George J. Gunn; Alistair W. Stott; R.W. Humphry

Results from an epidemiological model of an outbreak of Bovine Viral Diarrhoea (BVD) within a Scottish beef suckler herd are presented. These results concurred with field observations and encouraged us to fulfill the objective of providing an estimate of losses due to BVD to assist decision makers. Using the output from the model, estimates were made of losses associated with the outbreak. Without taking into account any financial premiums associated with disease-free status, the estimate of pound 37 (58) mean loss per cow per annum suggests that health schemes and vaccination should be of immediate financial interest to farmers and veterinary advisors.


Applied and Environmental Microbiology | 2004

Temporal shedding patterns and virulence factors of Escherichia coli serogroups O26, O103, O111, O145, and O157 in a cohort of beef calves and their dams

M. C. Pearce; Claire Jenkins; Leila Vali; Alastair W. Smith; Hazel I. Knight; T. Cheasty; H. R. Smith; George J. Gunn; Mark E. J. Woolhouse; S. G. B. Amyes; G. Frankel

ABSTRACT This study investigated the shedding of Escherichia coli O26, O103, O111, O145, and O157 in a cohort of beef calves from birth over a 5-month period and assessed the relationship between shedding in calves and shedding in their dams, the relationship between shedding and scouring in calves, and the effect of housing on shedding in calves. Fecal samples were tested by immunomagnetic separation and by PCR and DNA hybridization assays. E. coli O26 was shed by 94% of calves. Over 90% of E. coli O26 isolates carried the vtx1, eae, and ehl genes, 6.5% carried vtx1 and vtx2, and one isolate carried vtx2 only. Serogroup O26 isolates comprised seven pulsed-field gel electrophoresis (PFGE) patterns but were dominated by one pattern which represented 85.7% of isolates. E. coli O103 was shed by 51% of calves. Forty-eight percent of E. coli O103 isolates carried eae and ehl, 2% carried vtx2, and none carried vtx1. Serogroup O103 isolates comprised 10 PFGE patterns and were dominated by two patterns representing 62.5% of isolates. Shedding of E. coli O145 and O157 was rare. All serogroup O145 isolates carried eae, but none carried vtx1 or vtx2. All but one serogroup O157 isolate carried vtx2, eae, and ehl. E. coli O111 was not detected. In most calves, the temporal pattern of E. coli O26 and O103 shedding was random. E. coli O26 was detected in three times as many samples as E. coli O103, and the rate at which calves began shedding E. coli O26 for the first time was five times greater than that for E. coli O103. For E. coli O26, O103, and O157, there was no association between shedding by calves and shedding by dams within 1 week of birth. For E. coli O26 and O103, there was no association between shedding and scouring, and there was no significant change in shedding following housing.


Journal of Clinical Microbiology | 2003

Distribution of the saa Gene in Strains of Shiga Toxin-Producing Escherichia coli of Human and Bovine Origins

Claire Jenkins; Neil T. Perry; T. Cheasty; Darren Shaw; Gad Frankel; Gordon Dougan; George J. Gunn; Henry Smith; Adrienne W. Paton; James C. Paton

ABSTRACT Certain strains of Shiga toxin-producing Escherichia coli (STEC) which do not have the locus of enterocyte effacement pathogenicity island carry the STEC autoagglutinating adhesin (saa) gene. The distribution of the saa gene in STEC isolates from patients with hemolytic-uremic syndrome (HUS), patients with less severe diarrheal disease, asymptomatic individuals, and healthy cattle was examined. saa-positive strains were detected more frequently (P < 0.001) in STEC strains from bovines (32 of 56 strains) than in those from humans (8 of 91 strains). No significant association (P = 0.135) was found between the saa gene and STEC isolated from patients with HUS (6 of 46 strains) or diarrhea (2 of 29 strains) and from healthy controls (0 of 16 strains).


Proceedings of the National Academy of Sciences of the United States of America | 2013

Predicting the public health benefit of vaccinating cattle against Escherichia coli O157

Louise Matthews; Richard Reeve; David L. Gally; Christopher Low; Mark E. J. Woolhouse; Sean P. McAteer; Mary E. Locking; Margo E. Chase-Topping; Daniel T. Haydon; Lesley Allison; Mary Hanson; George J. Gunn; S. Reid

Identifying the major sources of risk in disease transmission is key to designing effective controls. However, understanding of transmission dynamics across species boundaries is typically poor, making the design and evaluation of controls particularly challenging for zoonotic pathogens. One such global pathogen is Escherichia coli O157, which causes a serious and sometimes fatal gastrointestinal illness. Cattle are the main reservoir for E. coli O157, and vaccines for cattle now exist. However, adoption of vaccines is being delayed by conflicting responsibilities of veterinary and public health agencies, economic drivers, and because clinical trials cannot easily test interventions across species boundaries, lack of information on the public health benefits. Here, we examine transmission risk across the cattle–human species boundary and show three key results. First, supershedding of the pathogen by cattle is associated with the genetic marker stx2. Second, by quantifying the link between shedding density in cattle and human risk, we show that only the relatively rare supershedding events contribute significantly to human risk. Third, we show that this finding has profound consequences for the public health benefits of the cattle vaccine. A naïve evaluation based on efficacy in cattle would suggest a 50% reduction in risk; however, because the vaccine targets the major source of human risk, we predict a reduction in human cases of nearly 85%. By accounting for nonlinearities in transmission across the human–animal interface, we show that adoption of these vaccines by the livestock industry could prevent substantial numbers of human E. coli O157 cases.


Applied and Environmental Microbiology | 2006

Prevalence and Virulence Factors of Escherichia coli Serogroups O26, O103, O111, and O145 Shed by Cattle in Scotland

M.C. Pearce; J. Evans; I.J. McKendrick; Alastair W. Smith; Hazel I. Knight; D. J. Mellor; Mark E. J. Woolhouse; George J. Gunn; J. C. Low

ABSTRACT A national survey was conducted to determine the prevalence of Escherichia coli O26, O103, O111, and O145 in feces of Scottish cattle. In total, 6,086 fecal pats from 338 farms were tested. The weighted mean percentages of farms on which shedding was detected were 23% for E. coli O26, 22% for E. coli O103, and 10% for E. coli O145. The weighted mean prevalences in fecal pats were 4.6% for E. coli O26, 2.7% for E. coli O103, and 0.7% for E. coli O145. No E. coli O111 was detected. Farms with cattle shedding E. coli serogroup O26, O103, or O145 were widely dispersed across Scotland and were identified most often in summer and autumn. However, on individual farms, fecal shedding of E. coli O26, O103, or O145 was frequently undetectable or the numbers of pats testing positive were small. For serogroup O26 or O103 there was clustering of positive pats within management groups, and the presence of an animal shedding one of these serogroups was a positive predictor for shedding by others, suggesting local transmission of infection. Carriage of vtx was rare in E. coli O103 and O145 isolates, but 49.0% of E. coli O26 isolates possessed vtx, invariably vtx1 alone or vtx1 and vtx2 together. The carriage of eae and ehxA genes was highly associated in all three serogroups. Among E. coli serogroup O26 isolates, 28.9% carried vtx, eae, and ehxA—a profile consistent with E. coli O26 strains known to cause human disease.


Letters in Applied Microbiology | 2003

Detection of Escherichia coli serogroups O26, O103, O111 and O145 from bovine faeces using immunomagnetic separation and PCR/DNA probe techniques.

C. Jenkins; M.C. Pearce; A.W. Smith; H.I. Knight; Darren Shaw; Tom Cheasty; Geoffrey Foster; George J. Gunn; Gordon Dougan; Henry R. Smith; G. Frankel

Aims: The aim of this study was to isolate Escherichia coli O26, O103, O111 and O145 from 745 samples of bovine faeces using (i) immunomagnetic separation (IMS) beads coated with antibodies to lipopolysaccharide, and slide agglutination (SA) tests and (ii) PCR and DNA probes for the detection of the Verocytotoxin (VT) genes.


Applied and Environmental Microbiology | 2004

Distribution of Escherichia coli O157 in Bovine Fecal Pats and Its Impact on Estimates of the Prevalence of Fecal Shedding

M. C. Pearce; D. Fenlon; J. C. Low; Alastair W. Smith; Hazel I. Knight; J. Evans; Geoffrey Foster; Barti A. Synge; George J. Gunn

ABSTRACT The distribution of Escherichia coli O157 in bovine feces was examined by testing multiple samples from fecal pats and determining the density of E. coli O157 in immunomagnetic separation (IMS)-positive fecal samples. The density of E. coli O157 in bovine feces was highly variable, differing by as much as 76,800 CFU g−1 between samples from the same fecal pat. The density in most positive samples was <100 CFU g−1, the limit of reliable detection by IMS. Testing only one 1-g sample of feces per pat with IMS may result in a sensitivity of detection as low as 20 to 50%. It is therefore probable that most surveys have greatly underestimated the prevalence of E. coli O157 shedding in cattle and the proportion of farms with shedding cattle. The sensitivity of the detection of E. coli O157 in bovine feces can be as much as doubled by testing two 1-g samples per pat rather than one 1-g sample.

Collaboration


Dive into the George J. Gunn's collaboration.

Top Co-Authors

Avatar

R.W. Humphry

Scottish Agricultural College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. C. Pearce

Scottish Agricultural College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geoffrey Foster

Scottish Agricultural College

View shared research outputs
Top Co-Authors

Avatar

Hazel I. Knight

Scottish Agricultural College

View shared research outputs
Researchain Logo
Decentralizing Knowledge