Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George K. Belka is active.

Publication


Featured researches published by George K. Belka.


Nature Medicine | 2001

c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations

Celina M. D'Cruz; Edward J. Gunther; Robert B. Boxer; Jennifer L. Hartman; Louis Sintasath; Susan E. Moody; James D. Cox; Seung I. Ha; George K. Belka; Alexander Golant; Robert D. Cardiff; Lewis A. Chodosh

Although the process of mammary tumorigenesis requires multiple genetic events, it is unclear to what extent carcinogenesis proceeds through preferred secondary pathways following a specific initiating oncogenic event. Similarly, the extent to which established mammary tumors remain dependent on individual mutations for maintenance of the transformed state is unknown. Here we use the tetracycline regulatory system to conditionally express the human c-MYC oncogene in the mammary epithelium of transgenic mice. MYC encodes a transcription factor implicated in multiple human cancers. In particular, amplification and overexpression of c-MYC in human breast cancers is associated with poor prognosis, although the genetic mechanisms by which c-MYC promotes tumor progression are poorly understood. We show that deregulated c-MYC expression in this inducible system results in the formation of invasive mammary adenocarcinomas, many of which fully regress following c-MYC deinduction. Approximately half of these tumors harbor spontaneous activating point mutations in the ras family of proto-oncogenes with a strong preference for Kras2 compared with Hras1. Nearly all tumors lacking activating ras mutations fully regressed following c-MYC deinduction, whereas tumors bearing ras mutations did not, suggesting that secondary mutations in ras contribute to tumor progression. These findings demonstrate that c-MYC-induced mammary tumorigenesis proceeds through a preferred secondary oncogenic pathway involving Kras2.


The FASEB Journal | 2002

A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology

Edward J. Gunther; George K. Belka; Gerald Wertheim; James Y. Wang; Jennifer L. Hartman; Robert B. Boxer; Lewis A. Chodosh

Normal developmental events such as puberty, pregnancy, and parity influence the susceptibility of the mammary gland to tumorigenesis in both humans and rodent model systems. Unfortunately, constitutive transgenic mouse models that rely on mammary‐specific promoters to control transgene expression have limited utility for studying the effect of developmental events on breast cancer risk since the hormonal signals governing these events also markedly influence transgene expression levels. A novel transgenic mouse system is described that uses the MMTV‐LTR to drive expression of the reverse tetracycline‐dependent transactivator rtTA. Transgenic mice expressing rtTA in the mammary epithelium were crossed with reporter lines bearing tet operator‐controlled transgenes. We tested the ability to spatially, temporally, and quantitatively control reporter gene expression after administration of doxycycline to bitransgenic mice. Transgene expression using this system can be rapidly induced and deinduced, is highly mammary specific, can be reproducibly titrated over a wide range of expression levels, and is essentially undetectable in the uninduced state. Homogeneous transgene expression throughout the mammary epithelium can be achieved. This system permits transgene expression to be restricted to any desired stage of postnatal mammary gland development. We have developed a mammary‐specific, doxycycline‐inducible transgenic mouse model for studying the effect of mammary gland development on transgene‐mediated phenotypes. Unlike other mammary‐specific, transgenic systems that have been described, this system combines spatially homogeneous transgene expression in the mammary epithelium during puberty, pregnancy, lactation, and involution with the use of an orally administered, inexpensive, and widely available inducing agent. This system offers new opportunities for the transgenic analysis of mammary gland biology in vivo.—Gunther, E. J., Belka, G. K., Wertheim, G. B. W., Wang, J., Hartman, J. L., Boxer, R. B., Chodosh, L. A. A novel doxycycline‐inducible system for the transgenic analysis of mammary gland biology. FASEB J. 16, 283–292 (2002)


The Journal of Nuclear Medicine | 2011

PET Imaging of Glutaminolysis in Tumors by 18F-(2S,4R)4-Fluoroglutamine

Brian P. Lieberman; Karl Ploessl; Limin Wang; Wenchao Qu; Zhihao Zha; David R. Wise; Lewis A. Chodosh; George K. Belka; Craig B. Thompson; Hank F. Kung

Changes in gene expression, metabolism, and energy requirements are hallmarks of cancer growth and self-sufficiency. Upregulation of the PI3K/Akt/mTor pathway in tumor cells has been shown to stimulate aerobic glycolysis, which has enabled 18F-FDG PET tumor imaging. However, of the millions of 18F-FDG PET scans conducted per year, a significant number of malignant tumors are 18F-FDG PET–negative. Recent studies suggest that several tumors may use glutamine as the key nutrient for survival. As an alternative metabolic tracer for tumors, 18F-(2S,4R)4-fluoroglutamine was developed as a PET tracer for mapping glutaminolytic tumors. Methods: A series of in vitro cell uptake and in vivo animal studies were performed to demonstrate tumor cell addiction to glutamine. Cell uptake studies of this tracer were performed in SF188 and 9L glioblastoma tumor cells. Dynamic small-animal PET studies of 18F-(2S,4R)4-fluoroglutamine were conducted in 2 animal models: xenografts produced in F344 rats by subcutaneous injection of 9L tumor cells and transgenic mice with M/tomND spontaneous mammary gland tumors. Results: In vitro studies showed that both transformed 9L and SF188 tumor cells displayed a high rate of glutamine uptake (maximum uptake, ≈16% dose/100 μg of protein). The cell uptake of 18F-(2S,4R)4-fluoroglutamine by SF188 cells is comparable to that of 3H-l-glutamine but higher than that of 18F-FDG. The tumor cell uptake can be selectively blocked. Biodistribution and PET studies showed that 18F-(2S,4R)4-fluoroglutamine localized in tumors with a higher uptake than in surrounding muscle and liver tissues. Data suggest that certain tumor cells may use glutamine for energy production. Conclusion: The results support that 18F-(2S,4R)4-fluoroglutamine is selectively taken up and trapped by tumor cells. It may be useful as a novel metabolic tracer for tumor imaging.


Cancer Research | 2006

Hormone-Induced Protection against Mammary Tumorigenesis Is Conserved in Multiple Rat Strains and Identifies a Core Gene Expression Signature Induced by Pregnancy

Collin M. Blakely; Alexander Stoddard; George K. Belka; Kathleen L. Notarfrancesco; Susan E. Moody; Celina M. D'Cruz; Lewis A. Chodosh

Women who have their first child early in life have a substantially lower lifetime risk of breast cancer. The mechanism for this is unknown. Similar to humans, rats exhibit parity-induced protection against mammary tumorigenesis. To explore the basis for this phenomenon, we identified persistent pregnancy-induced changes in mammary gene expression that are tightly associated with protection against tumorigenesis in multiple inbred rat strains. Four inbred rat strains that exhibit marked differences in their intrinsic susceptibilities to carcinogen-induced mammary tumorigenesis were each shown to display significant protection against methylnitrosourea-induced mammary tumorigenesis following treatment with pregnancy levels of estradiol and progesterone. Microarray expression profiling of parous and nulliparous mammary tissue from these four strains yielded a common 70-gene signature. Examination of the genes constituting this signature implicated alterations in transforming growth factor-beta signaling, the extracellular matrix, amphiregulin expression, and the growth hormone/insulin-like growth factor I axis in pregnancy-induced alterations in breast cancer risk. Notably, related molecular changes have been associated with decreased mammographic density, which itself is strongly associated with decreased breast cancer risk. Our findings show that hormone-induced protection against mammary tumorigenesis is widely conserved among divergent rat strains and define a gene expression signature that is tightly correlated with reduced mammary tumor susceptibility as a consequence of a normal developmental event. Given the conservation of this signature, these pathways may contribute to pregnancy-induced protection against breast cancer.


Genes & Development | 2012

Autocrine prolactin induced by the Pten–Akt pathway is required for lactation initiation and provides a direct link between the Akt and Stat5 pathways

Chien-Chung Chen; Douglas B. Stairs; Robert B. Boxer; George K. Belka; Nelson D. Horseman; James V. Alvarez; Lewis A. Chodosh

Extrapituitary prolactin (Prl) is produced in humans and rodents; however, little is known about its in vivo regulation or physiological function. We now report that autocrine prolactin is required for terminal mammary epithelial differentiation during pregnancy and that its production is regulated by the Pten-PI3K-Akt pathway. Conditional activation of the PI3K-Akt pathway in the mammary glands of virgin mice by either Akt1 expression or Pten deletion rapidly induced terminal mammary epithelial differentiation accompanied by the synthesis of milk despite the absence of lobuloalveolar development. Surprisingly, we found that mammary differentiation was due to the PI3K-Akt-dependent synthesis and secretion of autocrine prolactin and downstream activation of the prolactin receptor (Prlr)-Jak-Stat5 pathway. Consistent with this, Akt-induced mammary differentiation was abrogated in Prl(-/-), Prlr(-/-), and Stat5(-/-) mice. Furthermore, cells treated with conditioned medium from mammary glands in which Akt had been activated underwent rapid Stat5 phosphorylation in a manner that was blocked by inhibition of Jak2, treatment with an anti-Prl antibody, or deletion of the prolactin gene. Demonstrating a physiological requirement for autocrine prolactin, mammary glands from lactation-defective Akt1(-/-);Akt2(+/-) mice failed to express autocrine prolactin or activate Stat5 during late pregnancy despite normal levels of circulating serum prolactin and pituitary prolactin production. Our findings reveal that PI3K-Akt pathway activation is necessary and sufficient to induce autocrine prolactin production in the mammary gland, Stat5 activation, and terminal mammary epithelial differentiation, even in the absence of the normal developmental program that prepares the mammary gland for lactation. Together, these findings identify a function for autocrine prolactin during normal development and demonstrate its endogenous regulation by the PI3K-Akt pathway.


Development | 2005

Developmental stage determines the effects of MYC in the mammary epithelium

Collin M. Blakely; Louis Sintasath; Celina M. D'Cruz; Kristina T. Hahn; George K. Belka; Lewis A. Chodosh

Epidemiological findings suggest that the consequences of a given oncogenic stimulus vary depending upon the developmental state of the target tissue at the time of exposure. This is particularly evident in the mammary gland, where both age at exposure to a carcinogenic stimulus and the timing of a first full-term pregnancy can markedly alter the risk of developing breast cancer. Analogous to this, the biological consequences of activating oncogenes, such as MYC, can be influenced by cellular context both in terms of cell lineage and cellular environment. In light of this, we hypothesized that the consequences of aberrant MYC activation in the mammary gland might be determined by the developmental state of the gland at the time of MYC exposure. To test this hypothesis directly, we have used a doxycycline-inducible transgenic mouse model to overexpress MYC during different stages of mammary gland development. Using this model, we find that the ability of MYC to inhibit postpartum lactation is due entirely to its activation within a specific 72-hour window during mid-pregnancy; by contrast, MYC activation either prior to or following this 72-hour window has little or no effect on postpartum lactation. Surprisingly, we find that MYC does not block postpartum lactation by inhibiting mammary epithelial differentiation, but rather by promoting differentiation and precocious lactation during pregnancy, which in turn leads to premature involution of the gland. We further show that this developmental stage-specific ability of MYC to promote mammary epithelial differentiation is tightly linked to its ability to downregulate caveolin 1 and activate Stat5 in a developmental stage-specific manner. Our findings provide unique in vivo molecular evidence for developmental stage-specific effects of oncogene activation, as well as the first evidence linking MYC with activation of the Jak2-Stat5 signaling pathway.


Journal of Clinical Investigation | 2015

Notch promotes recurrence of dormant tumor cells following HER2/neu-targeted therapy

Daniel L. Abravanel; George K. Belka; Tien-chi Pan; Dhruv K. Pant; Meredith A. Collins; Christopher J. Sterner; Lewis A. Chodosh

Breast cancer mortality is principally due to recurrent tumors that arise from a reservoir of residual tumor cells that survive therapy. Remarkably, breast cancers can recur after extended periods of clinical remission, implying that at least some residual tumor cells pass through a dormant phase prior to relapse. Nevertheless, the mechanisms that contribute to breast cancer recurrence are poorly understood. Using a mouse model of recurrent mammary tumorigenesis in combination with bioinformatics analyses of breast cancer patients, we have identified a role for Notch signaling in mammary tumor dormancy and recurrence. Specifically, we found that Notch signaling is acutely upregulated in tumor cells following HER2/neu pathway inhibition, that Notch signaling remains activated in a subset of dormant residual tumor cells that persist following HER2/neu downregulation, that activation of Notch signaling accelerates tumor recurrence, and that inhibition of Notch signaling by either genetic or pharmacological approaches impairs recurrence in mice. Consistent with these findings, meta-analysis of microarray data from over 4,000 breast cancer patients revealed that elevated Notch pathway activity is independently associated with an increased rate of recurrence. Together, these results implicate Notch signaling in tumor recurrence from dormant residual tumor cells and provide evidence that dormancy is a targetable stage of breast cancer progression.


Cancer Research | 2014

Oncogene Pathway Activation in Mammary Tumors Dictates FDG-PET Uptake

James V. Alvarez; George K. Belka; Tien-chi Pan; Chien-Chung Chen; Eric Blankemeyer; Abass Alavi; Joel S. Karp; Lewis A. Chodosh

Increased glucose utilization is a hallmark of human cancer that is used to image tumors clinically. In this widely used application, glucose uptake by tumors is monitored by positron emission tomography of the labeled glucose analogue 2[(18)F]fluoro-2-deoxy-D-glucose (FDG). Despite its widespread clinical use, the cellular and molecular mechanisms that determine FDG uptake--and that underlie the heterogeneity observed across cancers-remain poorly understood. In this study, we compared FDG uptake in mammary tumors driven by the Akt1, c-MYC, HER2/neu, Wnt1, or H-Ras oncogenes in genetically engineered mice, correlating it to tumor growth, cell proliferation, and expression levels of gene involved in key steps of glycolytic metabolism. We found that FDG uptake by tumors was dictated principally by the driver oncogene and was not independently associated with tumor growth or cellular proliferation. Oncogene downregulation resulted in a rapid decrease in FDG uptake, preceding effects on tumor regression, irrespective of the baseline level of uptake. FDG uptake correlated positively with expression of hexokinase-2 (HK2) and hypoxia-inducible factor-1α (HIF1α) and associated negatively with PFK-2b expression and p-AMPK. The correlation between HK2 and FDG uptake was independent of all variables tested, including the initiating oncogene, suggesting that HK2 is an independent predictor of FDG uptake. In contrast, expression of Glut1 was correlated with FDG uptake only in tumors driven by Akt or HER2/neu. Together, these results demonstrate that the oncogenic pathway activated within a tumor is a primary determinant of its FDG uptake, mediated by key glycolytic enzymes, and provide a framework to interpret effects on this key parameter in clinical imaging.


Molecular Genetics & Genomic Medicine | 2016

A novel approach for next-generation sequencing of circulating tumor cells.

Stephanie S. Yee; David B. Lieberman; Tatiana Blanchard; JulieAnn Rader; Jianhua Zhao; Andrea B. Troxel; Daniel DeSloover; Alan J. Fox; Robert Daber; Bijal Kakrecha; Shrey Sukhadia; George K. Belka; Angela DeMichele; Lewis A. Chodosh; Jennifer J.D. Morrissette; Erica L. Carpenter

Next‐generation sequencing (NGS) of surgically resected solid tumor samples has become integral to personalized medicine approaches for cancer treatment and monitoring. Liquid biopsies, or the enrichment and characterization of circulating tumor cells (CTCs) from blood, can provide noninvasive detection of evolving tumor mutations to improve cancer patient care. However, the application of solid tumor NGS approaches to circulating tumor samples has been hampered by the low‐input DNA available from rare CTCs. Moreover, whole genome amplification (WGA) approaches used to generate sufficient input DNA are often incompatible with blood collection tube preservatives used to facilitate clinical sample batching.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Hunk negatively regulates c-myc to promote Akt-mediated cell survival and mammary tumorigenesis induced by loss of Pten

Elizabeth S. Yeh; George K. Belka; Ann E. Vernon; Chien-Chung Chen; Jason J. Jung; Lewis A. Chodosh

The protooncogenes Akt and c-myc each positively regulate cell growth and proliferation, but have opposing effects on cell survival. These oncogenes cooperate to promote tumorigenesis, in part because the prosurvival effects of Akt offset the proapoptotic effects of c-myc. Akt’s ability to counterbalance c-myc’s proapoptotic effects has primarily been attributed to Akt-induced stimulation of prosurvival pathways that indirectly antagonize the effects of c-myc. We report a more direct mechanism by which Akt modulates the proapoptotic effects of c-myc. Specifically, we demonstrate that Akt up-regulates the adenosine monophosphate-associated kinase (AMPK)-related protein kinase, Hormonally up-regulated neu-associated kinase (Hunk), which serves as an effector of Akt prosurvival signaling by suppressing c-myc expression in a kinase-dependent manner to levels that are compatible with cell survival. Consequently, Akt pathway activation in the mammary glands of Hunk−/− mice results in induction of c-myc expression to levels that induce apoptosis. c-myc knockdown rescues the increase in apoptosis induced by Hunk deletion in cells in which Akt has been activated, indicating that repression of c-myc is a principal mechanism by which Hunk mediates the prosurvival effects of Akt. Consistent with this mechanism of action, we find that Hunk is required for c-myc suppression and mammary tumorigenesis induced by phosphatase and tensin homolog (Pten) deletion in mice. Together, our findings establish a prosurvival function for Hunk in tumorigenesis, define an essential mechanism by which Akt suppresses c-myc–induced apoptosis, and identify Hunk as a previously unrecognized link between the Akt and c-myc oncogenic pathways.

Collaboration


Dive into the George K. Belka's collaboration.

Top Co-Authors

Avatar

Lewis A. Chodosh

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Robert B. Boxer

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Susan E. Moody

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Celina M. D'Cruz

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tien-chi Pan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Chien-Chung Chen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward J. Gunther

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge