Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tien-chi Pan is active.

Publication


Featured researches published by Tien-chi Pan.


Oncogene | 2004

Deregulated expression of LRBA facilitates cancer cell growth.

Jia-Wang Wang; Joshua J. Gamsby; Steven Highfill; Linda B. Mora; Gregory C. Bloom; Tim J Yeatman; Tien-chi Pan; Anna Ramne; Lewis A. Chodosh; W. Douglas Cress; Jiandong Chen; William G. Kerr

LRBA expression is induced by mitogens in lymphoid and myeloid cells. The Drosophila LRBA orthologue rugose/DAKAP550 is involved in Notch, Ras and EGFR pathways. These findings suggest that LRBA could play a role in cell types that have increased proliferative and survival capacity. Here, we show by microarray and real-time PCR analyses that LRBA is overexpressed in several different cancers relative to their normal tissue controls. We also show that LRBA promoter activity and endogenous LRBA mRNA levels are reduced by p53 and increased by E2F1, indicating that mutations in the tumor suppressors p53 and Rb could contribute to the deregulation of LRBA. Furthermore, inhibition of LRBA expression by RNA interference, or inhibition of its function by a dominant-negative mutant, leads to significant growth inhibition of cancer cells, demonstrating that deregulated expression of LRBA contributes to the altered growth properties of a cancer cell. Finally, we show that the phosphorylation of EGFR is affected by the dominant-negative mutant, suggesting LRBA plays a role in the mammalian EGFR pathway. These findings demonstrate that LRBA facilitates cancer cell growth and thus LRBA may represent a novel molecular target for cancer therapy.


Cancer Cell | 2013

Par-4 Downregulation Promotes Breast Cancer Recurrence by Preventing Multinucleation following Targeted Therapy

James V. Alvarez; Tien-chi Pan; Jason Ruth; Yi Feng; Alice Zhou; Dhruv K. Pant; Joshua S. Grimley; Thomas J. Wandless; Angela DeMichele; Lewis A. Chodosh

Most deaths from breast cancer result from tumor recurrence, but mechanisms underlying tumor relapse are largely unknown. We now report that Par-4 is downregulated during tumor recurrence and that Par-4 downregulation is necessary and sufficient to promote recurrence. Tumor cells with low Par-4 expression survive therapy by evading a program of Par-4-dependent multinucleation and apoptosis that is otherwise engaged following treatment. Low Par-4 expression is associated with poor response to neoadjuvant chemotherapy and an increased risk of relapse in patients with breast cancer, and Par-4 is downregulated in residual tumor cells that survive neoadjuvant chemotherapy. Our findings identify Par-4-induced multinucleation as a mechanism of cell death in oncogene-addicted cells and establish Par-4 as a negative regulator of breast cancer recurrence.


Journal of Clinical Investigation | 2015

Notch promotes recurrence of dormant tumor cells following HER2/neu-targeted therapy

Daniel L. Abravanel; George K. Belka; Tien-chi Pan; Dhruv K. Pant; Meredith A. Collins; Christopher J. Sterner; Lewis A. Chodosh

Breast cancer mortality is principally due to recurrent tumors that arise from a reservoir of residual tumor cells that survive therapy. Remarkably, breast cancers can recur after extended periods of clinical remission, implying that at least some residual tumor cells pass through a dormant phase prior to relapse. Nevertheless, the mechanisms that contribute to breast cancer recurrence are poorly understood. Using a mouse model of recurrent mammary tumorigenesis in combination with bioinformatics analyses of breast cancer patients, we have identified a role for Notch signaling in mammary tumor dormancy and recurrence. Specifically, we found that Notch signaling is acutely upregulated in tumor cells following HER2/neu pathway inhibition, that Notch signaling remains activated in a subset of dormant residual tumor cells that persist following HER2/neu downregulation, that activation of Notch signaling accelerates tumor recurrence, and that inhibition of Notch signaling by either genetic or pharmacological approaches impairs recurrence in mice. Consistent with these findings, meta-analysis of microarray data from over 4,000 breast cancer patients revealed that elevated Notch pathway activity is independently associated with an increased rate of recurrence. Together, these results implicate Notch signaling in tumor recurrence from dormant residual tumor cells and provide evidence that dormancy is a targetable stage of breast cancer progression.


Cancer Research | 2014

Oncogene Pathway Activation in Mammary Tumors Dictates FDG-PET Uptake

James V. Alvarez; George K. Belka; Tien-chi Pan; Chien-Chung Chen; Eric Blankemeyer; Abass Alavi; Joel S. Karp; Lewis A. Chodosh

Increased glucose utilization is a hallmark of human cancer that is used to image tumors clinically. In this widely used application, glucose uptake by tumors is monitored by positron emission tomography of the labeled glucose analogue 2[(18)F]fluoro-2-deoxy-D-glucose (FDG). Despite its widespread clinical use, the cellular and molecular mechanisms that determine FDG uptake--and that underlie the heterogeneity observed across cancers-remain poorly understood. In this study, we compared FDG uptake in mammary tumors driven by the Akt1, c-MYC, HER2/neu, Wnt1, or H-Ras oncogenes in genetically engineered mice, correlating it to tumor growth, cell proliferation, and expression levels of gene involved in key steps of glycolytic metabolism. We found that FDG uptake by tumors was dictated principally by the driver oncogene and was not independently associated with tumor growth or cellular proliferation. Oncogene downregulation resulted in a rapid decrease in FDG uptake, preceding effects on tumor regression, irrespective of the baseline level of uptake. FDG uptake correlated positively with expression of hexokinase-2 (HK2) and hypoxia-inducible factor-1α (HIF1α) and associated negatively with PFK-2b expression and p-AMPK. The correlation between HK2 and FDG uptake was independent of all variables tested, including the initiating oncogene, suggesting that HK2 is an independent predictor of FDG uptake. In contrast, expression of Glut1 was correlated with FDG uptake only in tumors driven by Akt or HER2/neu. Together, these results demonstrate that the oncogenic pathway activated within a tumor is a primary determinant of its FDG uptake, mediated by key glycolytic enzymes, and provide a framework to interpret effects on this key parameter in clinical imaging.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The Snf1-related kinase, Hunk, is essential for mammary tumor metastasis

Gerald Wertheim; Thomas W. Yang; Tien-chi Pan; Anna Ramne; Zhandong Liu; Heather Perry Gardner; Petra Kristel; Bas Kreike; Marc J. van de Vijver; Robert D. Cardiff; Carol Reynolds; Lewis A. Chodosh

We previously identified a SNF1/AMPK-related protein kinase, Hunk, from a mammary tumor arising in an MMTV-neu transgenic mouse. The function of this kinase is unknown. Using targeted deletion in mice, we now demonstrate that Hunk is required for the metastasis of c-myc-induced mammary tumors, but is dispensable for normal development. Reconstitution experiments revealed that Hunk is sufficient to restore the metastatic potential of Hunk-deficient tumor cells, as well as defects in migration and invasion, and does so in a manner that requires its kinase activity. Consistent with a role for this kinase in the progression of human cancers, the human homologue of Hunk is overexpressed in aggressive subsets of carcinomas of the ovary, colon, and breast. In addition, a murine gene expression signature that distinguishes Hunk-wild type from Hunk-deficient mammary tumors predicts clinical outcome in women with breast cancer in a manner consistent with the pro-metastatic function of Hunk in mice. These findings identify a direct role for Hunk kinase activity in metastasis and establish an in vivo function for this kinase.


Developmental Dynamics | 2009

Analysis of Gene Expression in PTHrP−/− Mammary Buds Supports a Role for BMP Signaling and MMP2 in the Initiation of Ductal Morphogenesis

Julie Hens; Pamela Dann; Minoti Hiremath; Tien-chi Pan; Lewis A. Chodosh; John J. Wysolmerski

Parathyroid hormone–related protein (PTHrP) acts on the mammary mesenchyme and is required for proper embryonic mammary development. In order to understand PTHrPs effects on mesenchymal cells, we profiled gene expression in WT and PTHrP−/− mammary buds, and in WT and K14‐PTHrP ventral skin at E15.5. By cross‐referencing the differences in gene expression between these groups, we identified 35 genes potentially regulated by PTHrP in the mammary mesenchyme, including 6 genes known to be involved in BMP signaling. One of these genes was MMP2. We demonstrated that PTHrP and BMP4 regulate MMP2 gene expression and MMP2 activity in mesenchymal cells. Using mammary bud cultures, we demonstrated that MMP2 acts downstream of PTHrP to stimulate ductal outgrowth. Future studies on the functional role of other genes on this list should expand our knowledge of how PTHrP signaling triggers the onset of ductal outgrowth from the embryonic mammary buds. Developmental Dynamics 238:2713–2724, 2009.


Genome Biology | 2005

Genomic analysis of early murine mammary gland development using novel probe-level algorithms

Stephen R. Master; Alexander Stoddard; L. Charles Bailey; Tien-chi Pan; Lewis A. Chodosh

We describe a novel algorithm (ChipStat) for detecting gene-expression changes utilizing probe-level comparisons of replicate Affymetrix oligonucleotide microarray data. A combined detection approach is shown to yield greater sensitivity than a number of widely used methodologies including SAM, dChip and logit-T. Using this approach, we identify alterations in functional pathways during murine neonatal-pubertal mammary development that include the coordinate upregulation of major urinary proteins and the downregulation of loci exhibiting reciprocal imprinting.


Cancer Research | 2014

Ceramide Kinase Promotes Tumor Cell Survival and Mammary Tumor Recurrence

Ania W. Payne; Dhruv K. Pant; Tien-chi Pan; Lewis A. Chodosh

Recurrent breast cancer is typically an incurable disease and, as such, is disproportionately responsible for deaths from this disease. Recurrent breast cancers arise from the pool of disseminated tumor cells (DTC) that survive adjuvant or neoadjuvant therapy, and patients with detectable DTCs following therapy are at substantially increased risk for recurrence. Consequently, the identification of pathways that contribute to the survival of breast cancer cells following therapy could aid in the development of more effective therapies that decrease the burden of residual disease and thereby reduce the risk of breast cancer recurrence. We now report that ceramide kinase (Cerk) is required for mammary tumor recurrence following HER2/neu pathway inhibition and is spontaneously upregulated during tumor recurrence in multiple genetically engineered mouse models for breast cancer. We find that Cerk is rapidly upregulated in tumor cells following HER2/neu downregulation or treatment with Adriamycin and that Cerk is required for tumor cell survival following HER2/neu downregulation. Consistent with our observations in mouse models, analysis of gene expression profiles from more than 2,200 patients revealed that elevated CERK expression is associated with an increased risk of recurrence in women with breast cancer. In addition, although CERK expression is associated with aggressive subtypes of breast cancer, including those that are estrogen receptor-negative, HER2(+), basal-like, or high grade, its association with poor clinical outcome is independent of these clinicopathologic variables. Together, our findings identify a functional role for Cerk in breast cancer recurrence and suggest the clinical utility of agents targeted against this prosurvival pathway.


Genome Biology | 2008

Singular value decomposition-based regression identifies activation of endogenous signaling pathways in vivo.

Zhandong Liu; Min Wang; James V. Alvarez; Megan E Bonney; Chien-Chung Chen; Celina M. D'Cruz; Tien-chi Pan; Mahlet G. Tadesse; Lewis A. Chodosh

The ability to detect activation of signaling pathways based solely on gene expression data represents an important goal in biological research. We tested the sensitivity of singular value decomposition-based regression by focusing on functional interactions between the Ras and transforming growth factor beta signaling pathways. Our findings demonstrate that this approach is sufficiently sensitive to detect the secondary activation of endogenous signaling pathways as it occurs through crosstalk following ectopic activation of a primary pathway.


Cancer Discovery | 2014

SPSB1 Promotes Breast Cancer Recurrence by Potentiating c-MET Signaling

Yi Feng; Tien-chi Pan; Dhruv K. Pant; Kristi R. Chakrabarti; James V. Alvarez; Jason Ruth; Lewis A. Chodosh

UNLABELLED Breast cancer mortality is principally due to tumor recurrence; however, the molecular mechanisms underlying this process are poorly understood. We now demonstrate that the suppressor of cytokine signaling protein SPSB1 is spontaneously upregulated during mammary tumor recurrence and is both necessary and sufficient to promote tumor recurrence in genetically engineered mouse models. The recurrence-promoting effects of SPSB1 result from its ability to protect cells from apoptosis induced by HER2/neu pathway inhibition or chemotherapy. This, in turn, is attributable to SPSB1 potentiation of c-MET signaling, such that preexisting SPSB1-overexpressing tumor cells are selected for following HER2/neu downregulation. Consistent with this, SPSB1 expression is positively correlated with c-MET activity in human breast cancers and with an increased risk of relapse in patients with breast cancer in a manner that is dependent upon c-MET activity. Our findings define a novel pathway that contributes to breast cancer recurrence and provide the first evidence implicating SPSB proteins in cancer. SIGNIFICANCE The principal cause of death from breast cancer is recurrence. This study identifies SPSB1 as a critical mediator of breast cancer recurrence, suggests activation of the SPSB1-c-MET pathway as an important mechanism of therapeutic resistance in breast cancers, and emphasizes that pharmacologic targets for recurrence may be unique to this stage of tumor progression.

Collaboration


Dive into the Tien-chi Pan's collaboration.

Top Co-Authors

Avatar

Lewis A. Chodosh

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Dhruv K. Pant

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George K. Belka

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

James V. Alvarez

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Angela DeMichele

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhandong Liu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bijal Kakrecha

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge