Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George Kuriakose is active.

Publication


Featured researches published by George Kuriakose.


Nature Cell Biology | 2003

The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages

Bo Feng; Pin Mei Yao; Yankun Li; Cecilia M. Devlin; Dajun Zhang; Heather P. Harding; Michele Sweeney; James X. Rong; George Kuriakose; Edward A. Fisher; Andrew R. Marks; David Ron; Ira Tabas

Excess cellular cholesterol induces apoptosis in macrophages, an event likely to promote progression of atherosclerosis. The cellular mechanism of cholesterol-induced apoptosis is unknown but had previously been thought to involve the plasma membrane. Here we report that the unfolded protein response (UPR) in the endoplasmic reticulum is activated in cholesterol-loaded macrophages, resulting in expression of the cell death effector CHOP. Cholesterol loading depletes endoplasmic reticulum calcium stores, an event known to induce the UPR. Furthermore, endoplasmic reticulum calcium depletion, the UPR, caspase-3 activation and apoptosis are markedly inhibited by selective inhibition of cholesterol trafficking to the endoplasmic reticulum, and Chop−/− macrophages are protected from cholesterol-induced apoptosis. We propose that cholesterol trafficking to endoplasmic reticulum membranes, resulting in activation of the CHOP arm of the UPR, is the key signalling step in cholesterol-induced apoptosis in macrophages.


Cell Metabolism | 2009

Reduced Apoptosis and Plaque Necrosis in Advanced Atherosclerotic Lesions of Apoe−/− and Ldlr−/− Mice Lacking CHOP

Edward B. Thorp; Gang Li; Tracie A. Seimon; George Kuriakose; David Ron; Ira Tabas

Endoplasmic reticulum (ER) stress is a hallmark of advanced atherosclerosis, but its causative role in plaque progression is unknown. In vitro studies have implicated the ER stress effector CHOP in macrophage apoptosis, a process involved in plaque necrosis in advanced atheromata. To test the effect of CHOP deficiency in vivo, aortic root lesions of fat-fed Chop+/+;Apoe-/- and Chop-/-;Apoe-/- mice were analyzed for size and morphology. Despite similar plasma lipoproteins, lesion area was 35% smaller in Chop-/-;Apoe-/- mice. Most importantly, plaque necrosis was reduced by approximately 50% and lesional apoptosis by 35% in the CHOP-deficient mice. Similar results were found in fat-fed Chop-/-;Ldlr-/- versus Chop+/+;Ldlr-/- mice. Thus, CHOP promotes plaque growth, apoptosis, and plaque necrosis in fat-fed Apoe-/- and Ldlr-/- mice. These data provide direct evidence for a causal link between the ER stress effector CHOP and plaque necrosis and suggest that interventions weakening this arm of the UPR may lessen plaque progression.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Mertk Receptor Mutation Reduces Efferocytosis Efficiency and Promotes Apoptotic Cell Accumulation and Plaque Necrosis in Atherosclerotic Lesions of Apoe−/− Mice

Edward B. Thorp; Dongying Cui; Dorien M. Schrijvers; George Kuriakose; Ira Tabas

Objective—Atherosclerotic plaques that are prone to disruption and acute thrombotic vascular events are characterized by large necrotic cores. Necrotic cores result from the combination of macrophage apoptosis and defective phagocytic clearance (efferocytosis) of these apoptotic cells. We previously showed that macrophages with tyrosine kinase-defective Mertk receptor (MertkKD) have a defect in phagocytic clearance of apoptotic macrophages in vitro. Herein we test the hypothesis that the MertkKD mutation would result in increased accumulation of apoptotic cells and promote necrotic core expansion in a mouse model of advanced atherosclerosis. Methods and Results—MertkKD;Apoe−/− mice and control Apoe−/− mice were fed a Western-type diet for 10 or 16 weeks, and aortic root lesions were analyzed for apoptosis and plaque necrosis. We found that the plaques of the MertkKD;Apoe−/− mice had a significant increase in terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive apoptotic cells. Most importantly, there were more non-macrophage-associated apoptotic cells in the MertkKD lesions, consistent with defective efferocytosis. The more advanced (16-week) MertkKD;Apoe−/− plaques were more necrotic, consistent with a progression from apoptotic cell accumulation to plaque necrosis in the setting of a defective efferocytosis receptor. Conclusion—In a mouse model of advanced atherosclerosis, mutation of the phagocytic Mertk receptor promotes the accumulation of apoptotic cells and the formation of necrotic plaques. These data are consistent with the notion that a defect in an efferocytosis receptor can accelerate the progression of atherosclerosis and suggest a novel therapeutic target to prevent advanced plaque progression and its clinical consequences.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Niemann-Pick C heterozygosity confers resistance to lesional necrosis and macrophage apoptosis in murine atherosclerosis

Bo Feng; Dajun Zhang; George Kuriakose; Cecillia M. Devlin; Mark Kockx; Ira Tabas

Macrophage death in advanced atherosclerotic lesions leads to lesional necrosis and likely promotes plaque instability, a precursor of acute vascular events. Macrophages in advanced lesions accumulate large amounts of unesterified cholesterol, which is a potent inducer of macrophage apoptosis. We have shown recently that induction of apoptosis in cultured macrophages requires cholesterol trafficking to the endoplasmic reticulum (ER). Moreover, macrophages from mice with a heterozygous mutation in the cholesterol-trafficking protein Npc1 have a selective defect in cholesterol trafficking to the ER and are protected from cholesterol-induced apoptosis. The goal of the present study was to test the importance of intracellular cholesterol trafficking in atherosclerotic lesional macrophage death by comparing lesion morphology in Npc1+/+;Apoe-/- and Npc1+/-;Apoe-/- mice. Although advanced lesions in Npc1+/+;Apoe-/- mice had extensive acellular areas that were rich in unesterified cholesterol and macrophage debris, the lesions of Npc1+/-;Apoe-/- mice were substantially more cellular and less necrotic. Moreover, compared with Npc1+/-;Apoe-/- lesions, Npc1+/+;Apoe-/- lesions had a greater number of large, TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling)-positive areas surrounding necrotic areas, indicative of macrophage apoptosis. These differences were observed despite similar total lesion area and similar plasma lipid levels in the two groups of mice. These data provide in vivo evidence that intact intracellular cholesterol trafficking is important for macrophage apoptosis in advanced atherosclerotic lesions and that the ER-based model of cholesterol-induced cytotoxicity is physiologically relevant. Moreover, by showing that lesional necrosis can be diminished by a subtle defect in intracellular trafficking, these findings suggest therapeutic strategies to stabilize atherosclerotic plaques.


Journal of Clinical Investigation | 2009

Macrophage deficiency of p38α MAPK promotes apoptosis and plaque necrosis in advanced atherosclerotic lesions in mice

Tracie A. Seimon; Yibin Wang; Seongah Han; Takafumi Senokuchi; Dorien M. Schrijvers; George Kuriakose; Alan R. Tall; Ira Tabas

ER stress occurs in macrophage-rich areas of advanced atherosclerotic lesions and contributes to macrophage apoptosis and subsequent plaque necrosis. Therefore, signaling pathways that alter ER stress-induced apoptosis may affect advanced atherosclerosis. Here we placed Apoe-/- mice deficient in macrophage p38alpha MAPK on a Western diet and found that they had a marked increase in macrophage apoptosis and plaque necrosis. The macrophage p38alpha-deficient lesions also exhibited a significant reduction in collagen content and a marked thinning of the fibrous cap, which suggests that plaque progression was advanced in these mice. Consistent with our in vivo data, we found that ER stress-induced apoptosis in cultured primary mouse macrophages was markedly accelerated under conditions of p38 inhibition. Pharmacological inhibition or genetic ablation of p38 suppressed activation of Akt in cultured macrophages and in atherosclerotic lesions. In addition, inhibition of Akt enhanced ER stress-induced macrophage apoptosis, and expression of a constitutively active myristoylated Akt blocked the enhancement of ER stress-induced apoptosis that occurred with p38 inhibition in cultured cells. Our results demonstrate that p38alpha MAPK may play a critical role in suppressing ER stress-induced macrophage apoptosis in vitro and advanced lesional macrophage apoptosis in vivo.


Science Translational Medicine | 2015

Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice.

Gabrielle Fredman; Nazila Kamaly; Stefano Spolitu; Jaclyn Milton; Devram S. Ghorpade; Raymond Chiasson; George Kuriakose; Mauro Perretti; Omid C. Farokhzad; Ira Tabas

Targeted nanoparticles containing Ac2-26 protect against the progression of advanced atherosclerosis in mice by promoting resolution of inflammation through activating FPR2/ALX on myeloid cells. Inflammation resolution: A solution for advanced atherosclerosis In atherosclerosis, fatty plaques build up in the arteries. It is therefore common that people with cardiovascular disease at risk for atherosclerosis will take statins, or lipid-lowering drugs. However, a complementary approach may be to resolve the ongoing, chronic inflammation in atherosclerosis. Such a proresolving tactic was adopted by Fredman et al. The authors encapsulated a small fragment of annexin A1—a protein that promotes the resolution of inflammation—in a polymeric nanoparticle, and decorated the nanoparticle with a collagen IV–binding peptide, to target the therapeutic package to advanced atherosclerotic plaques. The Ac2-26 nanoparticles accumulated at vessel lesions in a mouse model of advanced atherosclerosis. Once in place, the particles slowly released Ac2-26, which bound to immune cells, reducing oxidative stress, promoting collagen buildup, and increasing the anti-inflammatory cytokine interleukin-10—in sum, working to resolve inflammation and stabilize the plaque. This new proresolving nanomedicine approach will need to be tested in larger vessels and in animal models more similar to human atherosclerosis. But this targeted therapy is a first of its kind, paving the way for a new type of therapy to prevent heart disease. Chronic, nonresolving inflammation is a critical factor in the clinical progression of advanced atherosclerotic lesions. In the normal inflammatory response, resolution is mediated by several agonists, among which is the glucocorticoid-regulated protein called annexin A1. The proresolving actions of annexin A1, which are mediated through its receptor N-formyl peptide receptor 2 (FPR2/ALX), can be mimicked by an amino-terminal peptide encompassing amino acids 2–26 (Ac2-26). Collagen IV (Col IV)–targeted nanoparticles (NPs) containing Ac2-26 were evaluated for their therapeutic effect on chronic, advanced atherosclerosis in fat-fed Ldlr−/− mice. When administered to mice with preexisting lesions, Col IV–Ac2-26 NPs were targeted to lesions and led to a marked improvement in key advanced plaque properties, including an increase in the protective collagen layer overlying lesions (which was associated with a decrease in lesional collagenase activity), suppression of oxidative stress, and a decrease in plaque necrosis. In mice lacking FPR2/ALX in myeloid cells, these improvements were not seen. Thus, administration of a resolution-mediating peptide in a targeted NP activates its receptor on myeloid cells to stabilize advanced atherosclerotic lesions. These findings support the concept that defective inflammation resolution plays a role in advanced atherosclerosis, and suggest a new form of therapy.


Cell Metabolism | 2008

IRE1β Inhibits Chylomicron Production by Selectively Degrading MTP mRNA

Jahangir Iqbal; Kezhi Dai; Tracie A. Seimon; Rivka Jungreis; Miho Oyadomari; George Kuriakose; David Ron; Ira Tabas; M. Mahmood Hussain

Microsomal triglyceride transfer protein (MTP) is needed to assemble chylomicrons in the endoplasmic reticulum (ER) of enterocytes. We explored the role of an ER stress protein, inositol-requiring enzyme 1beta (IRE1beta), in regulating this process. High-cholesterol and high-fat diets decreased intestinal IRE1beta mRNA in wild-type mice. Ire1b(-/-) mice fed high-cholesterol and high-fat diets developed more pronounced hyperlipidemia because these mice secreted more chylomicrons and expressed more intestinal MTP, though not hepatic MTP, than wild-type mice did. Chylomicron secretion and MTP expression also were increased in primary enterocytes isolated from cholesterol-fed Ire1b(-/-) mice. There was no correlation between ER stress and MTP expression. Instead, cell culture studies revealed that IRE1beta, but not its ubiquitous homolog IRE1alpha, decreased MTP mRNA through increased posttranscriptional degradation. Conversely, knockdown of IRE1beta enhanced MTP expression. These studies show that IRE1beta plays a role in regulating MTP and in chylomicron production.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Genetic alterations of IL-1 receptor antagonist in mice affect plasma cholesterol level and foam cell lesion size

Cecilia M. Devlin; George Kuriakose; Emmet Hirsch; Ira Tabas

Inflammatory cytokines have been linked to atherosclerosis by using cell culture models and acute inflammation in animals. The goal of this study was to examine lipoprotein levels and early atherosclerosis in chronic animal models of altered IL-1 physiology by using mice with deficient or excess IL-1 receptor antagonist (IL-1ra). IL-1ra knockout C57BL/6J mice fed a cholesterol/cholate diet for 3 mo had a 3-fold decrease in non-high-density lipoprotein cholesterol and a trend toward increased foam-cell lesion area compared to wild-type littermate controls. IL-1ra transgenic/low-density lipoprotein receptor (LDLR) knockout mice fed a cholesterol-saturated fat diet for 10 wk showed a 40% increase in non-high-density lipoprotein cholesterol, consistent with the IL-1ra knockout data, although there was no change in lesion size. When these IL1-ra overexpressing transgenic mice on the LDLR knockout background were fed a high-cholesterol/high-fat diet containing cholate, however, a statistically significant 40% decrease in lesion area was observed compared to LDLR knockout mice lacking the transgene. By immunohistochemistry, IL-1ra was present in C57BL/6J and LDLR knockout aortae, absent in IL-1ra knockout aortae, and present at high levels in LDLR knockout/IL-1ra transgene aortae. In summary, IL-1ra tended to increase plasma lipoprotein levels and, when fed a cholate-containing diet, decrease foam-cell lesion size. These data demonstrate that in selected models of murine atherosclerosis, chronic IL-1ra depletion or overexpression has potentially important effects on lipoprotein metabolism and foam-cell lesion development.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1999

Sphingomyelinase, an Enzyme Implicated in Atherogenesis, Is Present in Atherosclerotic Lesions and Binds to Specific Components of the Subendothelial Extracellular Matrix

Sudhir Marathe; George Kuriakose; Kevin Jon Williams; Ira Tabas

Atherosclerotic lesions contain an extracellular sphingomyelinase (SMase) activity that hydrolyzes the sphingomyelin of subendothelial low density lipoprotein (LDL). This SMase activity may promote atherosclerosis by enhancing subendothelial LDL retention and aggregation, foam cell formation, and possibly other atherogenic processes. The results of recent cell-culture studies have led to the hypothesis that a specific molecule called secretory SMase (S-SMase) is responsible for the SMase activity known to be in lesions, although its presence in atheromata had not been examined directly. Herein we provide immunohistochemical and biochemical support for this hypothesis. First, 2 different antibodies against S-SMase detected extracellular immunoreactive protein in the intima of mouse, rabbit, and human atherosclerotic lesions. Much of this material in lesions appeared in association with the subendothelial matrix. Second, binding studies in vitro demonstrated that (125)I-S-SMase adheres to the extracellular matrix of cultured aortic smooth muscle and endothelial cells, specifically to the laminin and collagen components. Third, in its bound state, S-SMase retains substantial enzymatic activity against lipoprotein substrates. Overall, these data support the hypothesis that S-SMase is an extracellular arterial wall SMase that contributes to the hydrolysis of the sphingomyelin of subendothelial LDL. S-SMase may therefore be an important participant in atherogenesis through local enzymatic effects that stimulate subendothelial retention and aggregation of atherogenic lipoproteins.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Acid Sphingomyelinase Promotes Lipoprotein Retention Within Early Atheromata and Accelerates Lesion Progression

Cecilia M. Devlin; Andrew R. Leventhal; George Kuriakose; Edward H. Schuchman; Kevin Jon Williams; Ira Tabas

Objective—The key initial step in atherogenesis is the subendothelial retention of apolipoprotein B–containing lipoproteins. Acid sphingomyelinase (acid SMase), an enzyme present extracellularly within the arterial wall, strongly enhances lipoprotein retention in model systems in vitro, and retained lipoproteins in human plaques are enriched in ceramide, a product of SMase. We now sought to test a direct causative role for acid SMase in lipoprotein retention and atherogenesis in vivo. Methods and Results—We studied atherogenesis and lipoprotein retention in Asm−/− versus Asm+/+ mice on the Apoe−/− and Ldlr−/− backgrounds. Asm−/−;Apoe−/− mice had a ≈40% to 50% decrease in early foam cell aortic root lesion area compared with Asm+/+;Apoe−/− mice (P<0.05) despite no difference in plasma cholesterol or lipoproteins. To assay lipoprotein retention in vivo, the two groups of mice were injected with fluorescently labeled Apoe−/− lipoproteins. Early foam cell lesions of Asm−/−;Apoe−/− mice showed a striking 87% reduction in lipoprotein trapping (P<0.0001) compared with Asm+/+;Apoe−/− lesions. Similar results were obtained with Ldlr−/− mice, including an 81% reduction in lipoprotein retention within Asm−/−;Ldlr−/− lesions compared with Asm+/+;Ldlr−/− lesions (P<0.0005). Conclusions—These findings support a causal role for acid SMase in lipoprotein retention and lesion progression and provides further support for the response-to-retention model of atherogenesis.

Collaboration


Dive into the George Kuriakose's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Jon Williams

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge