Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ira Tabas is active.

Publication


Featured researches published by Ira Tabas.


Nature Cell Biology | 2011

Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress

Ira Tabas; David Ron

The ability to respond to perturbations in endoplasmic reticulum (ER) function is a fundamentally important property of all cells, but ER stress can also lead to apoptosis. In settings of chronic ER stress, the associated apoptosis may contribute to pathophysiological processes involved in a number of prevalent diseases, including neurodegenerative diseases, diabetes, atherosclerosis and renal disease. The molecular mechanisms linking ER stress to apoptosis are the topic of this review, with emphases on relevance to pathophysiology and integration and complementation among the various apoptotic pathways induced by ER stress.


Cell | 2011

Macrophages in the Pathogenesis of Atherosclerosis

Kathryn J. Moore; Ira Tabas

In atherosclerosis, the accumulation of apolipoprotein B-lipoproteins in the matrix beneath the endothelial cell layer of blood vessels leads to the recruitment of monocytes, the cells of the immune system that give rise to macrophages and dendritic cells. Macrophages derived from these recruited monocytes participate in a maladaptive, nonresolving inflammatory response that expands the subendothelial layer due to the accumulation of cells, lipid, and matrix. Some lesions subsequently form a necrotic core, triggering acute thrombotic vascular disease, including myocardial infarction, stroke, and sudden cardiac death. This Review discusses the central roles of macrophages in each of these stages of disease pathogenesis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1995

The Response-to-Retention Hypothesis of Early Atherogenesis

Kevin Jon Williams; Ira Tabas

Many processes have been implicated in early atherogenesis. These include endothelial denudation, injury, or activation, including shear stress–related events; local adherence of platelets; lipoprotein oxidation; lipoprotein aggregation; macrophage chemotaxis and foam cell formation; and smooth muscle cell alterations. Which process, if any, could be regarded as the key event in early atherogenesis, ie, absolutely required, yet also sufficient as the sole pathological stimulus in an otherwise normal artery to provoke a cascade of events leading to lesion formation? The work of many investigators, which we summarize here, strongly supports subendothelial retention of atherogenic lipoproteins as the central pathogenic process in atherogenesis (for prior reviews, see References 1 through 61 2 3 4 5 6 ). Our thesis is that other contributory processes are either not individually necessary or are not sufficient. Most often, they are merely normal, expected responses of otherwise-healthy tissue to the presence of retained lipoproteins. It is instructive to catalog other processes that have been argued to be central to the initiation of atherogenesis. The first is endothelial denudation,7 8 9 injury,10 or activation,11 12 as outlined in the “response-to-injury” hypothesis of Ross, Glomset, and coworkers. Although this important hypothesis has stimulated much of the work that we cite here, there is no definitive evidence in vivo that endothelial injury is either necessary or sufficient for lesion formation. The response-to-injury hypothesis originally presupposed endothelial desquamation as the key event in atherogenesis.7 8 9 It is now clear, however, that developing atheromata are covered by an intact endothelial layer throughout most stages of lesion progression: lipoprotein retention, fatty streak formation, and formation of advanced lesions.5 6 12 13 14 15 In humans, only the most complicated, ulcerated lesions lose their endothelial layer. Furthermore, in some experimental models, an intact endothelium is required …


Nature | 2005

Role of cholesterol and lipid organization in disease

Frederick R. Maxfield; Ira Tabas

Membrane lipids are essential for biological functions ranging from membrane trafficking to signal transduction. The composition of lipid membranes influences their organization and properties, so it is not surprising that disorders in lipid metabolism and transport have a role in human disease. Significant recent progress has enhanced our understanding of the molecular and cellular basis of lipid-associated disorders such as Tangier disease, Niemann–Pick disease type C and atherosclerosis. These insights have also led to improved understanding of normal physiology.


Circulation | 2007

Subendothelial Lipoprotein Retention as the Initiating Process in Atherosclerosis Update and Therapeutic Implications

Ira Tabas; Kevin Jon Williams; Jan Borén

The key initiating process in atherogenesis is the subendothelial retention of apolipoprotein B–containing lipoproteins. Local biological responses to these retained lipoproteins, including a chronic and maladaptive macrophage- and T-cell–dominated inflammatory response, promote subsequent lesion development. The most effective therapy against atherothrombotic cardiovascular disease to date—low density lipoprotein–lowering drugs—is based on the principle that decreasing circulating apolipoprotein B lipoproteins decreases the probability that they will enter and be retained in the subendothelium. Ongoing improvements in this area include more aggressive lowering of low-density lipoprotein and other atherogenic lipoproteins in the plasma and initiation of low-density lipoprotein–lowering therapy at an earlier age in at-risk individuals. Potential future therapeutic approaches include attempts to block the interaction of apolipoprotein B lipoproteins with the specific subendothelial matrix molecules that mediate retention and to interfere with accessory molecules within the arterial wall that promote retention such as lipoprotein lipase, secretory sphingomyelinase, and secretory phospholipase A2. Although not the primary focus of this review, therapeutic strategies that target the proatherogenic responses to retained lipoproteins and that promote the removal of atherogenic components of retained lipoproteins also hold promise. The finding that certain human populations of individuals who maintain lifelong low plasma levels of apolipoprotein B lipoproteins have an ≈90% decreased risk of coronary artery disease gives hope that our further understanding of the pathogenesis of this leading killer could lead to its eradication.


Nature Cell Biology | 2003

The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages

Bo Feng; Pin Mei Yao; Yankun Li; Cecilia M. Devlin; Dajun Zhang; Heather P. Harding; Michele Sweeney; James X. Rong; George Kuriakose; Edward A. Fisher; Andrew R. Marks; David Ron; Ira Tabas

Excess cellular cholesterol induces apoptosis in macrophages, an event likely to promote progression of atherosclerosis. The cellular mechanism of cholesterol-induced apoptosis is unknown but had previously been thought to involve the plasma membrane. Here we report that the unfolded protein response (UPR) in the endoplasmic reticulum is activated in cholesterol-loaded macrophages, resulting in expression of the cell death effector CHOP. Cholesterol loading depletes endoplasmic reticulum calcium stores, an event known to induce the UPR. Furthermore, endoplasmic reticulum calcium depletion, the UPR, caspase-3 activation and apoptosis are markedly inhibited by selective inhibition of cholesterol trafficking to the endoplasmic reticulum, and Chop−/− macrophages are protected from cholesterol-induced apoptosis. We propose that cholesterol trafficking to endoplasmic reticulum membranes, resulting in activation of the CHOP arm of the UPR, is the key signalling step in cholesterol-induced apoptosis in macrophages.


Nature Reviews Immunology | 2010

Macrophage death and defective inflammation resolution in atherosclerosis

Ira Tabas

A key event in atherosclerosis is a maladaptive inflammatory response to subendothelial lipoproteins. A crucial aspect of this response is a failure to resolve inflammation, which normally involves the suppression of inflammatory cell influx, effective clearance of apoptotic cells and promotion of inflammatory cell egress. Defects in these processes promote the progression of atherosclerotic lesions into dangerous plaques, which can trigger atherothrombotic vascular disease, the leading cause of death in industrialized societies. In this Review I provide an overview of these concepts, with a focus on macrophage death and defective apoptotic cell clearance, and discuss new therapeutic strategies designed to boost inflammation resolution in atherosclerosis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

Consequences and Therapeutic Implications of Macrophage Apoptosis in Atherosclerosis The Importance of Lesion Stage and Phagocytic Efficiency

Ira Tabas

Macrophage apoptosis occurs throughout all stages of atherosclerosis, yet new findings in vivo suggest that the consequences of this event may be very different in early versus late atherosclerotic lesions. In early lesions, where phagocytic clearance of apoptotic cells appears to be efficient, macrophage apoptosis is associated with diminished lesion cellularity and decreased lesion progression. In late lesions, however, a number of factors may contribute to defective phagocytic clearance of apoptotic macrophages, leading to secondary necrosis of these cells and a proinflammatory response. The cumulative effect of these late lesional events is generation of the necrotic core, which, in concert with proatherogenic effects of residual surviving macrophages, promotes further inflammation, plaque instability, and thrombosis. Thus, the ability or lack thereof of lesional phagocytes to safely clear apoptotic macrophages may be an important determinant of acute atherothrombotic clinical events. Further understanding of the mechanisms involved in macrophage apoptosis and phagocytic clearance might lead to novel therapeutic strategies directed against the progression of advanced plaques.


Science | 2013

Anti-Inflammatory Therapy in Chronic Disease: Challenges and Opportunities

Ira Tabas; Christopher K. Glass

A number of widespread and devastating chronic diseases, including atherosclerosis, type 2 diabetes, and Alzheimer’s disease, have a pathophysiologically important inflammatory component. In these diseases, the precise identity of the inflammatory stimulus is often unknown and, if known, is difficult to remove. Thus, there is interest in therapeutically targeting the inflammatory response. Although there has been success with anti-inflammatory therapy in chronic diseases triggered by primary inflammation dysregulation or autoimmunity, there are considerable limitations. In particular, the inflammatory response is critical for survival. As a result, redundancy, compensatory pathways, and necessity narrow the risk:benefit ratio of anti-inflammatory drugs. However, new advances in understanding inflammatory signaling and its links to resolution pathways, together with new drug development, offer promise in this area of translational biomedical research.


Journal of Clinical Investigation | 2002

Consequences of cellular cholesterol accumulation: basic concepts and physiological implications

Ira Tabas

The cells of most organs and tissues satisfy their requirements for membrane cholesterol via endogenous cholesterol biosynthesis (1). Many cell types, however, have acquired mechanisms to internalize exogenous sources of cholesterol, usually in the form of plasma-derived lipoproteins (2). Examples include steroid-synthesizing cells, hepatocytes, and macrophages and smooth muscle cells in atherosclerotic lesions, often referred to as foam cells. In the case of steroidogenic cells, the internalization of lipoprotein-cholesterol represents a physiological process that provides cells with precursor cholesterol stores, to be used for “acute” steroid hormone production (3). Hepatocyte lipoprotein uptake mediates the clearance of various classes of plasma lipoproteins (1), which can lead to whole-body elimination of excess diet-derived cholesterol in the bile, a process known as reverse cholesterol transport (Tall, this Perspective series, ref. 4). The uptake of arterial-wall lipoproteins by macrophages and smooth muscle cells may be a type of physiological scavenging response that initially helps rid the endothelium of potentially harmful lipoprotein material (5). As will be discussed below, however, this cellular process eventually contributes to the progression and complications of atherosclerotic vascular disease.

Collaboration


Dive into the Ira Tabas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge