George M. C. Janssen
Leiden University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by George M. C. Janssen.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Jing Shi; Rachel Knevel; Parawee Suwannalai; Michael P M van der Linden; George M. C. Janssen; Peter A. van Veelen; N. Levarht; Annette H. M. van der Helm-van Mil; Anthony Cerami; Tom W J Huizinga; René E. M. Toes; Leendert A. Trouw
Autoimmune responses against posttranslationally modified antigens are a hallmark of several autoimmune diseases. For example, antibodies against citrullinated protein antigens (ACPA) have shown their relevance for the prognosis and diagnosis of rheumatoid arthritis (RA), and have been implicated in disease pathogenesis. It is conceivable that other autoantibody systems, recognizing other posttranslationally modified proteins, are also present in RA. Here, we describe the presence of an autoantibody system that discriminates between citrulline- and homocitrulline-containing antigens in the sera of RA-patients. IgG antibodies recognizing carbamylated (homocitrulline-containing) antigens were present in sera of over 45% of RA-patients. Likewise, anticarbamylated protein (anti-CarP) IgA antibodies were observed in 43% of RA-sera. ACPA and anti-CarP antibodies are distinct autoantibodies because, in selected double-positive patients, the anti-CarP antibody binding to carbamylated antigens could be inhibited by carbamylated antigens, but not by control or citrullinated antigens. Similarly, ACPA-binding to citrullinated antigens could only be inhibited by citrullinated antigens. In line with this observation, 16% of ACPA-negative RA-patients, as measured by a standard ACPA assay, harbored IgG anti-CarP antibodies, whereas 30% of these patients tested positive for IgA anti-CarP antibodies. The presence of anti-CarP antibodies was predictive for a more severe disease course in ACPA-negative patients as measured by radiological progression. Taken together, these data show the presence of a unique autoantibody system recognizing carbamylated, but not citrullinated, protein antigens. These antibodies are predictive for a more severe clinical course in ACPA-negative RA-patients, indicating that anti-CarP antibodies are a unique and relevant serological marker for ACPA-negative RA.
Nature Methods | 2004
Chatarina Larsson; Jørn Koch; Anders Nygren; George M. C. Janssen; Anton K. Raap; Ulf Landegren; Mats Nilsson
Methods are needed to study single molecules to reveal variability, interactions and mechanisms that may go undetected at the level of populations of molecules. We describe here an integrated series of reaction steps that allow individual nucleic acid molecules to be detected with excellent specificity. Oligonucleotide probes are circularized after hybridization to target sequences that have been prepared so that localized amplification reactions can be initiated from the target molecules. The process results in strong, discrete detection signals anchored to the target molecules. We use the method to observe the distribution, within and among human cells, of individual normal and mutant mitochondrial genomes that differ at a single nucleotide position.
FEBS Journal | 1988
George M. C. Janssen; Wim Möller
The guanine nucleotide exchange factor, elongation factor 1 beta gamma (EF-1 beta gamma) has been purified from Artemia cysts using an improved method. The protein consists of two distinct polypeptides with relative molecular masses of 26,000 (EF-1 beta) and 46,000 (EF-1 gamma). A nucleoside diphosphate phosphotransferase activity often found in EF-1 beta gamma preparations has been completely separated from the actual guanine nucleotide exchange stimulatory activity of EF-1 beta gamma, thus indicating that nucleotide diphosphate phosphotransferase is not an intrinsic property of EF-1 beta. Both EF-1 beta gamma and EF-1 beta have been shown to stimulate the following three reactions to a comparable degree: (a) exchange of GDP bound to EF-1 alpha with exogenous GDP; (b) EF-1 alpha-dependent binding of Phe-tRNA to ribosomes; (c) poly(U)-dependent poly(phenylalanine) synthesis. However, a significantly higher nucleotide exchange rate was observed in the presence of EF-1 beta gamma compared to EF-1 beta alone. Concerning elongation factor 1 gamma (EF-1 gamma) the following observations were made. In contrast to EF-1 beta, pure EF-1 gamma is rather insoluble in aqueous buffers, but the tendency to precipitate can be partially suppressed by the addition of detergents. In particular, EF-1 gamma partitions solely into the detergent phase of Triton X-114 solutions. EF-1 gamma is also more susceptible to spontaneous, specific fragmentation. It is remarkably that about 5% of the cellular pool of EF-1 beta gamma was found to be present in membrane fractions, under conditions where no EF-1 alpha was detectable in these fractions. Furthermore it was noted that EF-1 beta gamma copurified strongly with tubulin on DEAE-cellulose. Moreover, it was observed that from a mixture of EF-1 beta gamma and tubulin, EF-1 gamma coprecipitates with tubulin using a non-denaturating immunoprecipitation technique. These findings suggest that EF-1 gamma has a hydrophobic domain and interacts with membrane and cytoskeleton structures in the cell.
Annals of Medicine | 2005
J. A. Maassen; George M. C. Janssen; Leen M. 't Hart
Mitochondria provide cells with most of the energy in the form of adenosine triphosphate (ATP). Mitochondria are complex organelles encoded both by nuclear and mtDNA. Only a few mitochondrial components are encoded by mtDNA, most of the mt‐proteins are nuclear DNA encoded. Remarkably, the majority of the known mutations leading to a mitochondrial disease have been identified in mtDNA rather than in nuclear DNA. In general, the idea is that these pathogenic mutations in mtDNA affect energy supply leading to a disease state. Remarkably, different mtDNA mutations can associate with distinct disease states, a situation that is difficult to reconcile with the idea that a reduced ATP production is the sole pathogenic factor. This review deals with emerging insight into the mechanism by which the A3243G mutation in the mitochondrial tRNA (Leu, UUR) gene associates with diabetes as major clinical expression. A decrease in glucose‐induced insulin secretion by pancreatic beta‐cells and a premature aging of these cells seem to be the main process by which this mutation causes diabetes. The underlying mechanisms and variability in clinical presentation are discussed.
Biochimica et Biophysica Acta | 1990
H.T.F. van Damme; Reinout Amons; R. Karssies; C.J. Timmers; George M. C. Janssen; Wim Möller
Elongation factor (EF)-1β, a 26 kDa protein, is the eukaryotic equivalent of bacterial EF-Ts, the nucleotide exchange factor in protein synthesis. EF-1β catalyzes the exchange of guanine nucleotides bound to EF-1α; the latter protein is the eukaryotic equivalent of bacterial EF-Tu. Limited proteolytic cleavage studies on EF-1β lead to the following picture: the protein is composed of two domains, an aminoterminal and a carboxyterminal domain, connected to each other by a stretch of hydrophilic, charged amino acids situated in the middle of the molecule. The carboxyterminal domain supplies the catalytic site for the nucleotide exchange reaction, whereas the aminoterminal domain interacts with EF-1γ, the third component of elongation factor 1. The regulatory, serine phosphate residue, Ser-89, localized in the hydrophilic stretch of EF-1β, does not appear to be necessary for the basic exchange reaction. The fourth component of the high molecular weight elongation factor complex (EF-1H), named EF-1δ or 28 K protein, is homologous to EF-1β and contains regions very similar to the carboxyterminal part. EF-1δ was found to be active in the nucleotide exchange reaction.
Journal of Biological Chemistry | 1999
George M. C. Janssen; J. Antonie Maassen; Johannes M.W. van den Ouweland
Cells harboring patient-derived mitochondria with an A-to-G transition at nucleotide position 3243 of their mitochondrial DNA display severe loss of respiration when compared with cells containing the wild-type adenine but otherwise identical mitochondrial DNA sequence. The amount and degree of leucylation of tRNALeu(UUR) were both found to be highly reduced in mutant cells. Despite the low level of leucyl-tRNALeu(UUR), the rate of mitochondrial translation was not seriously affected by this mutation. Therefore, decrease of mitochondrial protein synthesis as such does not appear to be a necessary prerequisite for loss of respiration. Rather, the mitochondrially encoded proteins seem subject to elevated degradation, leading to a severe reduction in their steady state levels. Our results favor a scheme in which the 3243 mutation causes loss of respiration through accelerated protein degradation, leading to a disequilibrium between the levels of mitochondrial and nuclear encoded respiratory chain subunits and thereby a reduction of functional respiratory chain complexes. The possible mechanisms underlying the pathogenesis of mitochondrial diabetes is discussed.
European Journal of Immunology | 2013
Rodney A. Rosalia; Esther D. Quakkelaar; Anke Redeker; Selina Khan; Marcel Camps; Jan W. Drijfhout; Ana Luisa Silva; Wim Jiskoot; Thorbald van Hall; Peter A. van Veelen; George M. C. Janssen; Kees L. M. C. Franken; Luis J. Cruz; Angelino Tromp; Jaap Oostendorp; Sjoerd H. van der Burg; Ferry Ossendorp; Cornelis J. M. Melief
The efficiency of antigen (Ag) processing by dendritic cells (DCs) is vital for the strength of the ensuing T‐cell responses. Previously, we and others have shown that in comparison to protein vaccines, vaccination with synthetic long peptides (SLPs) has shown more promising (pre‐)clinical results. Here, we studied the unknown mechanisms underlying the observed vaccine efficacy of SLPs. We report an in vitro processing analysis of SLPs for MHC class I and class II presentation by murine DCs and human monocyte‐derived DCs. Compared to protein, SLPs were rapidly and much more efficiently processed by DCs, resulting in an increased presentation to CD4+ and CD8+ T cells. The mechanism of access to MHC class I loading appeared to differ between the two forms of Ag. Whereas whole soluble protein Ag ended up largely in endolysosomes, SLPs were detected very rapidly outside the endolysosomes after internalization by DCs, followed by proteasome‐ and transporter associated with Ag processing‐dependent MHC class I presentation. Compared to the slower processing route taken by whole protein Ags, our results indicate that the efficient internalization of SLPs, accomplished by DCs but not by B or T cells and characterized by a different and faster intracellular routing, leads to enhanced CD8+ T‐cell activation.
Annals of the Rheumatic Diseases | 2013
Jing Shi; Annemiek Willemze; George M. C. Janssen; Peter A. van Veelen; Jan W. Drijfhout; Anthony Cerami; Tom W J Huizinga; Leendert A. Trouw; René E. M. Toes
Recently, a novel family of autoantibodies in rheumatoid arthritis (RA) patients was described: anti-carbamylated protein (Anti-CarP) antibodies, which target carbamylated (homocitrulline-containing) epitopes.1 ,2 Since citrulline and homocitrulline have a similar structure, we wished to determine to what extent human autoantibodies can differentiate between them. Unlike human antibodies, the anti-modified citrulline (AMC) antibody developed by Dr Senshu3–8 is able to recognise citrullinated epitopes irrespective of the neighbouring amino acids. Thus, we also aimed to verify whether the AMC assay could distinguish between these two amino acids. To address this, we loaded gels with citrullinated, carbamylated and non-modified forms of foetal calfs serum (FCS) and human fibrinogen (Fib). Gels loaded with equal amounts of these protein preparations (figure 1A) were used for western blotting and staining with the ‘AMC-Senshu’ method. Both the citrullinated and the carbamylated forms of the proteins tested were strongly recognised, whereas, the non-modified form did not reveal any staining (figure 1B). Staining similar western blots with selected human sera1 revealed that sera-positive …
Annals of the Rheumatic Diseases | 2016
Yoann Rombouts; Annemiek Willemze; Joyce Jbc van Beers; Jing Shi; Priscilla F Kerkman; Linda van Toorn; George M. C. Janssen; Arnaud Zaldumbide; Rob C. Hoeben; Ger J. M. Pruijn; André M. Deelder; Gertjan Wolbink; Theo Rispens; Peter A. van Veelen; Tom W J Huizinga; Manfred Wuhrer; Leendert A. Trouw; Hans Ulrich Scherer; René E. M. Toes
Objectives To understand the molecular features distinguishing anti-citrullinated protein antibodies (ACPA) from ‘conventional’ antibodies in rheumatoid arthritis (RA). Methods Serum of ACPA-positive RA patients was fractionated by size exclusion chromatography and analysed for the presence of ACPA-IgG by ELISA. ACPA-IgG and non-citrulline-specific IgG were affinity purified from serum, plasma and/or synovial fluid and analysed by gel electrophoresis. Electrophoresis bands were excised, enzymatically digested and analysed by mass spectrometry. Binding affinity to citrullinated antigens was measured by ELISA and imaging surface plasmon resonance using recombinant monoclonal ACPA with molecular modifications. Results In all donor samples studied (n=24), ACPA-IgG exhibited a 10–20 kDa higher molecular weight compared with non-autoreactive IgG. This feature also distinguished ACPA-IgG from antibodies against recall antigens or other disease-specific autoantibodies. Structural analysis revealed that a high frequency of N-glycans in the (hyper)variable domains of ACPA is responsible for this observation. In line with their localisation, these N-glycans were found to modulate binding avidity of ACPA to citrullinated antigens. Conclusions The vast majority of ACPA-IgG harbour N-glycans in their variable domains. As N-linked glycosylation requires glycosylation consensus sites in the protein sequence and as these are lacking in the ‘germline-counterparts’ of identified variable domains, our data indicate that the N-glycosylation sites in ACPA variable domains have been introduced by somatic hypermutation. This finding also suggests that ACPA-hyperglycosylation confers a selective advantage to ACPA-producing B cells. This unique and completely novel feature of the citrulline-specific immune response in RA elucidates our understanding of the underlying B cell response.
Journal of Biological Chemistry | 2012
Menno van Lummel; Peter A. van Veelen; Arnaud Zaldumbide; Arnoud H. de Ru; George M. C. Janssen; Antonis K. Moustakas; George K. Papadopoulos; Jan W. Drijfhout; Bart O. Roep; Frits Koning
Background: HLA-DQ2/8 heterozygous individuals have the highest risk for development of type 1 diabetes. Results: The disease-associated HLA-DQ2/8 transdimer exhibits unique peptide binding features compared with other HLA-DQ2/8 dimers. Conclusion: This newly identified binding motif predicts islet autoantigen-derived peptides as candidate T cell epitopes. Significance: Predicting new HLA-DQ2/8 transdimer-specific candidate T cell epitopes sets the stage for testing candidate diabetogenic epitopes. HLA-DQ2 and HLA-DQ8 are strongly predisposing haplotypes for type 1 diabetes (T1D). Yet HLA-DQ2/8 heterozygous individuals have a synergistically increased risk compared with HLA-DQ2 or HLA-DQ8 homozygote subjects that may result from the presence of a transdimer formed between the α-chain of HLA-DQ2 (DQA1*05:01) and the β-chain of HLA-DQ8 (DQB1*03:02). We generated cells exclusively expressing this transdimer (HLA-DQ8trans), characterized its peptide binding repertoire, and defined a unique transdimer-specific peptide binding motif that was found to be distinct from those of HLA-DQ2 and HLA-DQ8. This motif predicts an array of peptides of islet autoantigens as candidate T cell epitopes, many of which selectively bind to the HLA transdimer, whereas others bind to both HLA-DQ8 and transdimer with similar affinity. Our findings provide a molecular basis for the association between HLA-DQ transdimers and T1D and set the stage for rational testing of potential diabetogenic peptide epitopes.