Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George M. Papadimitriou is active.

Publication


Featured researches published by George M. Papadimitriou.


Cerebral Cortex | 2009

Delineation of the Middle Longitudinal Fascicle in Humans: A Quantitative, In Vivo, DT-MRI Study

Nikos Makris; George M. Papadimitriou; Jonathan Kaiser; Scott F. Sorg; David N. Kennedy; Deepak N. Pandya

Experimental and imaging studies in monkeys have outlined various long association fiber bundles within the temporoparietal region. In the present study the trajectory of the middle longitudinal fascicle (MdLF) has been delineated in 4 human subjects using diffusion tensor magnetic resonance imaging segmentation and tractography. The MdLF seems to extend from the inferior parietal lobule (IPL), specifically the angular gyrus, to the temporal pole remaining within the white matter of the superior temporal gyrus (STG). Comparison of the superior longitudinal fascicle II-arcuate fascicle (SLF II-AF) with the MdLF in the same subjects revealed that MdLF is located in a medial and caudal position relative to SLF II-AF and that it extends more rostrally. Given the location of MdLF between the IPL (angular gyrus) and the STG, it is suggested that MdLF could have a role in language and attention functions.


Alcoholism: Clinical and Experimental Research | 2008

Frontal White Matter and Cingulum Diffusion Tensor Imaging Deficits in Alcoholism

Gordon J. Harris; Sharon Kim Jaffin; Steven M. Hodge; David N. Kennedy; Verne S. Caviness; Ksenija Marinkovic; George M. Papadimitriou; Nikos Makris; Marlene Oscar-Berman

BACKGROUND Alcoholism-related deficits in cognition and emotion point toward frontal and limbic dysfunction, particularly in the right hemisphere. Prefrontal and anterior cingulate cortices are involved in cognitive and emotional functions and play critical roles in the oversight of the limbic reward system. In the present study, we examined the integrity of white matter tracts that are critical to frontal and limbic connectivity. METHODS Diffusion tensor magnetic resonance imaging (DT-MRI) was used to assess functional anisotropy (FA), a measure of white matter integrity, in 15 abstinent long-term chronic alcoholic and 15 demographically equivalent control men. Voxel-based and region-based analyses of group FA differences were applied to these scans. RESULTS Alcoholic subjects had diminished frontal lobe FA in the right superior longitudinal fascicles II and III, orbitofrontal cortex white matter, and cingulum bundle, but not in corresponding left hemisphere regions. These right frontal and cingulum white matter regional FA measures provided 97% correct group discrimination. Working Memory scores positively correlated with superior longitudinal fascicle III FA measures in control subjects only. CONCLUSIONS The findings demonstrate white matter microstructure deficits in abstinent alcoholic men in several right hemisphere tracts connecting prefrontal and limbic systems. These white matter deficits may contribute to underlying dysfunction in memory, emotion, and reward response in alcoholism.


Neurobiology of Aging | 2007

Frontal connections and cognitive changes in normal aging rhesus monkeys: a DTI study.

Nikos Makris; George M. Papadimitriou; Andre van der Kouwe; David N. Kennedy; Steven M. Hodge; Anders M. Dale; Thomas Benner; Lawrence L. Wald; Ona Wu; David S. Tuch; Verne S. Caviness; Tara L. Moore; Ronald J. Killiany; Mark B. Moss; Douglas L. Rosene

Recent anatomical studies have found that cortical neurons are mainly preserved during the aging process while myelin damage and even axonal loss is prominent throughout the forebrain. We used diffusion tensor imaging (DT-MRI) to evaluate the hypothesis that during the process of normal aging, white matter changes preferentially affect the integrity of long corticocortical association fiber tracts, specifically the superior longitudinal fasciculus II and the cingulum bundle. This would disrupt communication between the frontal lobes and other forebrain regions leading to cognitive impairments. We analyzed DT-MRI datasets from seven young and seven elderly behaviorally characterized rhesus monkeys, creating fractional anisotropy (FA) maps of the brain. Significant age-related reductions in mean FA values were found for the superior longitudinal fasciculus II and the cingulum bundle, as well as the anterior corpus callosum. Comparison of these FA reductions with behavioral measures demonstrated a statistically significant linear relationship between regional FA and performance on a test of executive function. These findings support the hypothesis that alterations to the integrity of these long association pathways connecting the frontal lobe with other forebrain regions contribute to cognitive impairments in normal aging. To our knowledge this is the first investigation reporting such alterations in the aging monkey.


NeuroImage | 2007

The occipitofrontal fascicle in humans: A quantitative, in vivo, DT-MRI study

Nikos Makris; George M. Papadimitriou; Scott F. Sorg; David N. Kennedy; Verne S. Caviness; Deepak N. Pandya

Since the existence of the occipitofrontal fascicle (OFF) in humans has remained controversial, we utilized diffusion tensor imaging (DT-MRI)-based segmentation and tractography to investigate its trajectory in vivo in the human. We found that the OFF is distinct from the subcallosal fasciculus or Muratoffs bundle (MB) and extends from the dorsal and medial parts of the occipital lobe as well as the dorsal, medial and inferior parietal lobules to the dorsal and medial part of the prefrontal and premotor regions. In most of its course, it remains parallel to the corpus callosum, the caudate nucleus and the lateral ventricle. In the coronal plane, the OFF is discerned in the core of the white matter medial to the corona radiata and the superior longitudinal fascicle II (SLF II) and lateral to MB and the corpus callosum. The volumetric measurements of the stem portion of the OFF indicate that the OFF is smaller than the SLF II and the cingulum bundle. Since DT-MRI allows the visualization of OFF fibers leading to the projection areas but not to the origin or termination of these fibers, this has been extrapolated from the experimental data in non-human primates. The OFF may have a role in visual spatial processing along with SLF II.


NeuroImage | 2006

Human cerebral cortex: A system for the integration of volume- and surface-based representations

Nikos Makris; Jonathan Kaiser; Christian Haselgrove; Larry J. Seidman; Joseph Biederman; Denise Boriel; Eve M. Valera; George M. Papadimitriou; Bruce Fischl; Verne S. Caviness; David N. Kennedy

We describe an MRI-based system for topological analysis followed by measurements of topographic features for the human cerebral cortex that takes as its starting point volumetric segmentation data. This permits interoperation between volume-based and surface-based topographic analysis and extends the functionality of many existing segmentation schemes. We demonstrate the utility of these operations in individual as well as to group analysis. The methodology integrates analyses of cortical segmentation data generated by manual and semi-automated volumetric morphometry routines (such as the program cardviews) with the procedures of the FreeSurfer program to generate a cortical ribbon of the cerebrum and perform cortical topographic measurements (including thickness, surface area and curvature) in individual subjects as well as in subject populations. This system allows the computation of topographical cortical measurements for segmentation data generated from manual and semi-automated volumetric sources other than FreeSurfer. These measurements can be regionally specific and integrated with systems of cortical parcellation that subdivides the neocortex into gyral-based parcellation units (PUs). This system of topographical analysis of the cerebral cortex is consistent with current views of cortical development and neural systems organization of the human and non-human primate brain.


Brain Structure & Function | 2013

Human middle longitudinal fascicle: variations in patterns of anatomical connections.

N. Makris; Maria Giulia Preti; Takeshi Asami; Paula E. Pelavin; B. Campbell; George M. Papadimitriou; J. Kaiser; Giuseppe Baselli; Carl-Fredrik Westin; Martha Elizabeth Shenton; Marek Kubicki

Based on high-resolution diffusion tensor magnetic resonance imaging (DTI) tractographic analyses in 39 healthy adult subjects, we derived patterns of connections and measures of volume and biophysical parameters, such as fractional anisotropy (FA) for the human middle longitudinal fascicle (MdLF). Compared to previous studies, we found that the cortical connections of the MdLF in humans appear to go beyond the superior temporal (STG) and angular (AG) gyri, extending to the temporal pole (TP), superior parietal lobule (SPL), supramarginal gyrus, precuneus and the occipital lobe (including the cuneus and lateral occipital areas). Importantly, the MdLF showed a striking lateralized pattern with predominant connections between the TP, STG and AG on the left and TP, STG and SPL on the right hemisphere. In light of the results of the present study, and of the known functional role of the cortical areas interconnected by the MdLF, we suggested that this fiber pathway might be related to language, high order auditory association, visuospatial and attention functions.


Brain Imaging and Behavior | 2013

Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography

N. Makris; Maria Giulia Preti; Demian Wassermann; Yogesh Rathi; George M. Papadimitriou; C. Yergatian; Bradford C. Dickerson; Martha Elizabeth Shenton; Marek Kubicki

The middle longitudinal fascicle (MdLF) is a major fiber connection running principally between the superior temporal gyrus and the parietal lobe, neocortical regions of great biological and clinical interest. Although one of the most prominent cerebral association fiber tracts, it has only recently been discovered in humans. In this high angular resolution diffusion imaging (HARDI) MRI study, we delineated the two major fiber connections of the human MdLF, by examining morphology, topography, cortical connections, biophysical measures, volume and length in seventy-four brains. These two fiber connections course together through the dorsal temporal pole and the superior temporal gyrus maintaining a characteristic topographic relationship in the mediolateral and ventrodorsal dimensions. As these pathways course towards the parietal lobe, they split to form separate fiber pathways, one following a ventrolateral trajectory and connecting with the angular gyrus and the other following a dorsomedial route and connecting with the superior parietal lobule. Based on the functions of their cortical affiliations, we suggest that the superior temporal-angular connection of the MdLF, i.e., STG(MdLF)AG plays a role in language and attention, whereas the superior temporal-superior parietal connection of the MdLF, i.e., STG(MdLF)SPL is involved in visuospatial and integrative audiovisual functions. Furthermore, the MdLF may have clinical implications in neurodegenerative disorders such as primary progressive aphasia, frontotemporal dementia, posterior cortical atrophy, corticobulbar degeneration and Alzheimer’s disease as well as attention-deficit/hyperactivity disorder and schizophrenia.


PLOS ONE | 2014

A Novel Approach of Groupwise fMRI-Guided Tractography Allowing to Characterize the Clinical Evolution of Alzheimer's Disease

Maria Giulia Preti; Nikos Makris; George M. Papadimitriou; Maria Marcella Laganà; Ludovica Griffanti; Mario Clerici; Raffaello Nemni; Carl-Fredrik Westin; Giuseppe Baselli; Francesca Baglio

Guiding diffusion tract-based anatomy by functional magnetic resonance imaging (fMRI), we aim to investigate the relationship between structural connectivity and functional activity in the human brain. To this purpose, we introduced a novel groupwise fMRI-guided tractographic approach, that was applied on a population ranging between prodromic and moderate stages of Alzheimers disease (AD). The study comprised of 15 subjects affected by amnestic mild cognitive impairment (aMCI), 14 diagnosed with AD and 14 elderly healthy adults who were used as controls. By creating representative (ensemble) functionally guided tracts within each group of participants, our methodology highlighted the white matter fiber connections involved in verbal fluency functions for a specific population, and hypothesized on brain compensation mechanisms that potentially counteract or reduce cognitive impairment symptoms in prodromic AD. Our hope is that this fMRI-guided tractographic approach could have potential impact in various clinical studies, while investigating white/gray matter connectivity, in both health and disease.


Psychiatry Research-neuroimaging | 2017

Gender dimorphism of brain reward system volumes in alcoholism

Kayle S. Sawyer; Marlene Oscar-Berman; Olivier J. Barthelemy; George M. Papadimitriou; Gordon J. Harris; Nikos Makris

The brains reward network has been reported to be smaller in alcoholic men compared to nonalcoholic men, but little is known about the volumes of reward regions in alcoholic women. Morphometric analyses were performed on magnetic resonance brain scans of 60 long-term chronic alcoholics (ALC; 30 men) and 60 nonalcoholic controls (NC; 29 men). We derived volumes of total brain, and cortical and subcortical reward-related structures including the dorsolateral prefrontal (DLPFC), orbitofrontal, and cingulate cortices, and the temporal pole, insula, amygdala, hippocampus, nucleus accumbens septi (NAc), and ventral diencephalon (VDC). We examined the relationships of the volumetric findings to drinking history. Analyses revealed a significant gender interaction for the association between alcoholism and total reward network volumes, with ALC men having smaller reward volumes than NC men and ALC women having larger reward volumes than NC women. Analyses of a priori subregions revealed a similar pattern of reward volume differences with significant gender interactions for DLPFC and VDC. Overall, the volume of the cerebral ventricles in ALC participants was negatively associated with duration of abstinence, suggesting decline in atrophy with greater length of sobriety.


Brain Imaging and Behavior | 2015

Multi-tensor investigation of orbitofrontal cortex tracts affected in subcaudate tractotomy

Jimmy Chen Yang; George M. Papadimitriou; Ryan Eckbo; Edward H. Yeterian; Lichen Liang; Darin D. Dougherty; Sylvain Bouix; Yogesh Rathi; Martha Elizabeth Shenton; Marek Kubicki; Emad N. Eskandar; Nikos Makris

Subcaudate tractotomy (SCT) is a neurosurgical lesioning procedure that can reduce symptoms in medically intractable obsessive compulsive disorder (OCD). Due to the putative importance of the orbitofrontal cortex (OFC) in symptomatology, fibers that connect the OFC, SCT lesion, and either the thalamus or brainstem were investigated with two-tensor tractography using an unscented Kalman filter approach. From this dataset, fibers were warped to Montreal Neurological Institute space, and probability maps with center-of-mass analysis were subsequently generated. In comparing fibers from the same OFC region, including medial OFC (mOFC), central OFC (cOFC), and lateral OFC (lOFC), the area of divergence for fibers connected with the thalamus versus the brainstem is posterior to the anterior commissure. At the anterior commissure, fibers connected with the thalamus run dorsal to those connected with the brainstem. As OFC fibers travel through the ventral aspect of the internal capsule, lOFC fibers are dorsal to cOFC and mOFC fibers. Using neuroanatomical comparison, tracts coursing between the OFC and thalamus are likely part of the anterior thalamic radiations, while those between the OFC and brainstem likely belong to the medial forebrain bundle. These data support the involvement of the OFC in OCD and may be relevant to creating differential lesional procedures of specific tracts or to developing deep brain stimulation programming paradigms.

Collaboration


Dive into the George M. Papadimitriou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David N. Kennedy

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marek Kubicki

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yogesh Rathi

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge