Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikos Makris is active.

Publication


Featured researches published by Nikos Makris.


Neuron | 2002

Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain

Bruce Fischl; David H. Salat; Evelina Busa; Marilyn S. Albert; Megan E. Dieterich; Christian Haselgrove; Andre van der Kouwe; Ronald J. Killiany; David N. Kennedy; Shuna Klaveness; Albert Montillo; Nikos Makris; Bruce R. Rosen; Anders M. Dale

We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes, the current method assigns one of 37 labels to each voxel, including left and right caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala. The classification technique employs a registration procedure that is robust to anatomical variability, including the ventricular enlargement typically associated with neurological diseases and aging. The technique is shown to be comparable in accuracy to manual labeling, and of sufficient sensitivity to robustly detect changes in the volume of noncortical structures that presage the onset of probable Alzheimers disease.


NeuroImage | 2004

Sequence-independent segmentation of magnetic resonance images

Bruce Fischl; David H. Salat; Andre van der Kouwe; Nikos Makris; Florent Ségonne; Brian T. Quinn; Anders M. Dale

We present a set of techniques for embedding the physics of the imaging process that generates a class of magnetic resonance images (MRIs) into a segmentation or registration algorithm. This results in substantial invariance to acquisition parameters, as the effect of these parameters on the contrast properties of various brain structures is explicitly modeled in the segmentation. In addition, the integration of image acquisition with tissue classification allows the derivation of sequences that are optimal for segmentation purposes. Another benefit of these procedures is the generation of probabilistic models of the intrinsic tissue parameters that cause MR contrast (e.g., T1, proton density, T2*), allowing access to these physiologically relevant parameters that may change with disease or demographic, resulting in nonmorphometric alterations in MR images that are otherwise difficult to detect. Finally, we also present a high band width multiecho FLASH pulse sequence that results in high signal-to-noise ratio with minimal image distortion due to B0 effects. This sequence has the added benefit of allowing the explicit estimation of T2* and of reducing test-retest intensity variability.


Magnetic Resonance in Medicine | 2002

High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity

David S. Tuch; Timothy G. Reese; Mette R. Wiegell; Nikos Makris; John W. Belliveau; Van J. Wedeen

Magnetic resonance (MR) diffusion tensor imaging (DTI) can resolve the white matter fiber orientation within a voxel provided that the fibers are strongly aligned. However, a given voxel may contain a distribution of fiber orientations due to, for example, intravoxel fiber crossing. The present study sought to test whether a geodesic, high b‐value diffusion gradient sampling scheme could resolve multiple fiber orientations within a single voxel. In regions of fiber crossing the diffusion signal exhibited multiple local maxima/minima as a function of diffusion gradient orientation, indicating the presence of multiple intravoxel fiber orientations. The multimodality of the observed diffusion signal precluded the standard tensor reconstruction, so instead the diffusion signal was modeled as arising from a discrete mixture of Gaussian diffusion processes in slow exchange, and the underlying mixture of tensors was solved for using a gradient descent scheme. The multitensor reconstruction resolved multiple intravoxel fiber populations corresponding to known fiber anatomy. Magn Reson Med 48:577–582, 2002.


Neuron | 1997

Acute Effects of Cocaine on Human Brain Activity and Emotion

Hans C. Breiter; Randy L. Gollub; Robert M. Weisskoff; David N. Kennedy; Nikos Makris; Joshua D. Berke; Julie M. Goodman; Howard L. Kantor; David R. Gastfriend; Jonn Riorden; R.Thomas Mathew; Bruce R. Rosen; Steven E. Hyman

We investigated brain circuitry mediating cocaine-induced euphoria and craving using functional MRI (fMRI). During double-blind cocaine (0.6 mg/kg) and saline infusions in cocaine-dependent subjects, the entire brain was imaged for 5 min before and 13 min after infusion while subjects rated scales for rush, high, low, and craving. Cocaine induced focal signal increases in nucleus accumbens/subcallosal cortex (NAc/SCC), caudate, putamen, basal forebrain, thalamus, insula, hippocampus, parahippocampal gyrus, cingulate, lateral prefrontal and temporal cortices, parietal cortex, striate/extrastriate cortices, ventral tegmentum, and pons and produced signal decreases in amygdala, temporal pole, and medial frontal cortex. Saline produced few positive or negative activations, which were localized to lateral prefrontal cortex and temporo-occipital cortex. Subjects who underwent repeat studies showed good replication of the regional fMRI activation pattern following cocaine and saline infusions, with activations on saline retest that might reflect expectancy. Brain regions that exhibited early and short duration signal maxima showed a higher correlation with rush ratings. These included the ventral tegmentum, pons, basal forebrain, caudate, cingulate, and most regions of lateral prefrontal cortex. In contrast, regions that demonstrated early but sustained signal maxima were more correlated with craving than with rush ratings; such regions included the NAc/SCC, right parahippocampal gyrus, and some regions of lateral prefrontal cortex. Sustained negative signal change was noted in the amygdala, which correlated with craving ratings. Our data demonstrate the ability of fMRI to map dynamic patterns of brain activation following cocaine infusion in cocaine-dependent subjects and provide evidence of dynamically changing brain networks associated with cocaine-induced euphoria and cocaine-induced craving.


NeuroImage | 2006

Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer.

Xiao Han; Jorge Jovicich; David H. Salat; Andre van der Kouwe; Brian T. Quinn; Silvester Czanner; Evelina Busa; Jenni Pacheco; Marilyn S. Albert; Ronald J. Killiany; Paul Maguire; Diana Rosas; Nikos Makris; Anders M. Dale; Bradford C. Dickerson; Bruce Fischl

In vivo MRI-derived measurements of human cerebral cortex thickness are providing novel insights into normal and abnormal neuroanatomy, but little is known about their reliability. We investigated how the reliability of cortical thickness measurements is affected by MRI instrument-related factors, including scanner field strength, manufacturer, upgrade and pulse sequence. Several data processing factors were also studied. Two test-retest data sets were analyzed: 1) 15 healthy older subjects scanned four times at 2-week intervals on three scanners; 2) 5 subjects scanned before and after a major scanner upgrade. Within-scanner variability of global cortical thickness measurements was <0.03 mm, and the point-wise standard deviation of measurement error was approximately 0.12 mm. Variability was 0.15 mm and 0.17 mm in average, respectively, for cross-scanner (Siemens/GE) and cross-field strength (1.5 T/3 T) comparisons. Scanner upgrade did not increase variability nor introduce bias. Measurements across field strength, however, were slightly biased (thicker at 3 T). The number of (single vs. multiple averaged) acquisitions had a negligible effect on reliability, but the use of a different pulse sequence had a larger impact, as did different parameters employed in data processing. Sample size estimates indicate that regional cortical thickness difference of 0.2 mm between two different groups could be identified with as few as 7 subjects per group, and a difference of 0.1 mm could be detected with 26 subjects per group. These results demonstrate that MRI-derived cortical thickness measures are highly reliable when MRI instrument and data processing factors are controlled but that it is important to consider these factors in the design of multi-site or longitudinal studies, such as clinical drug trials.


Human Brain Mapping | 2000

Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects.

Kathleen K.S. Hui; Jing Liu; Nikos Makris; Randy L. Gollub; Anthony W. Chen; Christopher I. Moore; David N. Kennedy; Bruce R. Rosen; Kenneth K. Kwong

Acupuncture, an ancient therapeutic technique, is emerging as an important modality of complementary medicine in the United States. The use and efficacy of acupuncture treatment are not yet widely accepted in Western scientific and medical communities. Demonstration of regionally specific, quantifiable acupuncture effects on relevant structures of the human brain would facilitate acceptance and integration of this therapeutic modality into the practice of modern medicine. Research with animal models of acupuncture indicates that many of the beneficial effects may be mediated at the subcortical level in the brain. We used functional magnetic resonance imaging (fMRI) to investigate the effects of acupuncture in normal subjects and to provide a foundation for future studies on mechanisms of acupuncture action in therapeutic interventions. Acupuncture needle manipulation was performed at Large Intestine 4 (LI 4, Hegu) on the hand in 13 subjects [Stux, 1997]. Needle manipulation on either hand produced prominent decreases of fMRI signals in the nucleus accumbens, amygdala, hippocampus, parahippocampus, hypothalamus, ventral tegmental area, anterior cingulate gyrus (BA 24), caudate, putamen, temporal pole, and insula in all 11 subjects who experienced acupuncture sensation. In marked contrast, signal increases were observed primarily in the somatosensory cortex. The two subjects who experienced pain instead of acupuncture sensation exhibited signal increases instead of decreases in the anterior cingulate gyrus (BA 24), caudate, putamen, anterior thalamus, and posterior insula. Superficial tactile stimulation to the same area elicited signal increases in the somatosensory cortex as expected, but no signal decreases in the deep structures. These preliminary results suggest that acupuncture needle manipulation modulates the activity of the limbic system and subcortical structures. We hypothesize that modulation of subcortical structures may be an important mechanism by which acupuncture exerts its complex multisystem effects. Hum Brain Mapp 9:13–25, 2000.


Annals of Neurology | 2004

Localization of white matter volume increase in autism and developmental language disorder

Martha R. Herbert; David A. Ziegler; Nikos Makris; Pauline A. Filipek; Thomas L. Kemper; Joseph J. Normandin; Heather A. Sanders; David N. Kennedy; Verne S. Caviness

Increased brain volume in autism appears to be driven mainly by an unexplained white matter enlargement, and we have reported a similar phenomenon in developmental language disorder (DLD). Localization of this enlargement would strongly guide research into its cause, tissue basis, and functional implications. We utilized a white matter parcellation technique that divides cerebral white matter into an outer zone containing the radiate compartment and an inner zone containing sagittal and bridging system compartments. In both high‐functioning autism and DLD, enlargement localized to the radiate white matter (all lobes in autism, all but parietal in DLD), whereas inner zone white matter compartments showed no volume differences from controls. Furthermore, in both autism and DLD, later or longer‐myelinating regions showed greater volume increases over controls. Neither group showed cerebral cortex, corpus callosum, or internal capsule volume differences from control. Radiate white matter myelinates later than deep white matter; this pattern of enlargement thus is consistent with striking postnatal head circumference percentile increases reported in autism. These findings suggest an ongoing postnatal process in both autism and DLD that is probably intrinsic to white matter, that primarily affects intrahemispheric and corticocortical connections, and that places these two disorders on the same spectrum.


Biological Psychiatry | 2005

Structural brain imaging of attention-deficit/hyperactivity disorder.

Larry J. Seidman; Eve M. Valera; Nikos Makris

Many investigators have hypothesized that attention-deficit/hyperactivity disorder (ADHD) involves structural and functional brain abnormalities in frontal-striatal circuitry. Although our review suggests that there is substantial support for this hypothesis, a growing literature demonstrates widespread abnormalities affecting other cortical regions and the cerebellum. Because there is only one report studying adults with ADHD, this summary is based on children. A key limitation of the literature is that most of the studies until recently have been underpowered, using samples of fewer than 20 subjects per group. Nevertheless, these studies are largely consistent with the most comprehensive and definitive study (Castellanos et al 2002). Moreover, studies differ in the degree to which they address the influence of medications, comorbidities, or gender, and most have not addressed potentially important sources of heterogeneity such as family history of ADHD, subtype, or perinatal complications. Despite these limitations, a relatively consistent picture has emerged. The most replicated alterations in ADHD in childhood include significantly smaller volumes in the dorsolateral prefrontal cortex, caudate, pallidum, corpus callosum, and cerebellum. These results suggest that the brain is altered in a more widespread manner than has been previously hypothesized. Developmental studies are needed to address the evolution of this brain disorder into adulthood.


Neurobiology of Aging | 2005

Effects of age on volumes of cortex, white matter and subcortical structures

Kristine B. Walhovd; Anders M. Fjell; Ivar Reinvang; Arvid Lundervold; Anders M. Dale; Dag E. Eilertsen; Brian T. Quinn; David H. Salat; Nikos Makris; Bruce Fischl

The effect of age was investigated in and compared across 16 automatically segmented brain measures: cortical gray matter, cerebral white matter, hippocampus, amygdala, thalamus, the accumbens area, caudate, putamen, pallidum, brainstem, cerebellar cortex, cerebellar white matter, the lateral ventricle, the inferior lateral ventricle, and the 3rd and 4th ventricle. Significant age effects were found for all volumes except pallidum and the 4th ventricle. Heterogeneous age responses were seen in that age relationships for cortex, amygdala, thalamus, the accumbens area, and caudate were linear, while cerebral white matter, hippocampus, brainstem, cerebellar white, and gray matter, as well as volume of the lateral, inferior lateral, and 3rd ventricles showed curvilinear relationships with age. In general, the findings point to global and large effects of age across brain volumes.


NeuroImage | 2005

The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI

Kathleen K.S. Hui; Jing Liu; Ovidiu Marina; Vitaly Napadow; Christian Haselgrove; Kenneth K. Kwong; David N. Kennedy; Nikos Makris

Clinical and experimental data indicate that most acupuncture clinical results are mediated by the central nervous system, but the specific effects of acupuncture on the human brain remain unclear. Even less is known about its effects on the cerebellum. This fMRI study demonstrated that manual acupuncture at ST 36 (Stomach 36, Zusanli), a main acupoint on the leg, modulated neural activity at multiple levels of the cerebro-cerebellar and limbic systems. The pattern of hemodynamic response depended on the psychophysical response to needle manipulation. Acupuncture stimulation typically elicited a composite of sensations termed deqi that is related to clinical efficacy according to traditional Chinese medicine. The limbic and paralimbic structures of cortical and subcortical regions in the telencephalon, diencephalon, brainstem and cerebellum demonstrated a concerted attenuation of signal intensity when the subjects experienced deqi. When deqi was mixed with sharp pain, the hemodynamic response was mixed, showing a predominance of signal increases instead. Tactile stimulation as control also elicited a predominance of signal increase in a subset of these regions. The study provides preliminary evidence for an integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 that correlates with the psychophysical response.

Collaboration


Dive into the Nikos Makris's collaboration.

Top Co-Authors

Avatar

David N. Kennedy

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen V. Faraone

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Ming T. Tsuang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge