Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George P. Amorino is active.

Publication


Featured researches published by George P. Amorino.


Radiation Research | 2003

Stress and radiation-induced activation of multiple intracellular signaling pathways.

Paul Dent; Adly Yacoub; Joseph N. Contessa; Rubén W. Carón; George P. Amorino; Michael P. Hagan; Steven Grant; Rupert Schmidt-Ullrich

Abstract Dent, P., Yacoub, A., Contessa, J., Caron, R., Amorino, G., Valerie, K., Hagan, M. P., Grant, S. and Schmidt-Ullrich, R. Stress and Radiation-Induced Activation of Multiple Intracellular Signaling Pathways. Radiat. Res. 159, 283–300 (2003). Exposure of cells to a variety of stresses induces compensatory activations of multiple intracellular signaling pathways. These activations can play critical roles in controlling cell survival and repopulation effects in a stress-specific and cell type-dependent manner. Some stress-induced signaling pathways are those normally activated by mitogens such as the EGFR/RAS/PI3K-MAPK pathway. Other pathways activated by stresses such as ionizing radiation include those downstream of death receptors, including pro-caspases and the transcription factor NFKB. This review will attempt to describe some of the complex network of signals induced by ionizing radiation and other cellular stresses in animal cells, with particular attention to signaling by growth factor and death receptors. This includes radiation-induced signaling via the EGFR and IGFI-R to the PI3K, MAPK, JNK, and p38 pathways as well as FAS-R and TNF-R signaling to pro-caspases and NFKB. The roles of autocrine ligands in the responses of cells and bystander cells to radiation and cellular stresses will also be discussed. Based on the data currently available, it appears that radiation can simultaneously activate multiple signaling pathways in cells. Reactive oxygen and nitrogen species may play an important role in this process by inhibiting protein tyrosine phosphatase activity. The ability of radiation to activate signaling pathways may depend on the expression of growth factor receptors, autocrine factors, RAS mutation, and PTEN expression. In other words, just because pathway X is activated by radiation in one cell type does not mean that pathway X will be activated in a different cell type. Radiation-induced signaling through growth factor receptors such as the EGFR may provide radioprotective signals through multiple downstream pathways. In some cell types, enhanced basal signaling by proto-oncogenes such as RAS may provide a radioprotective signal. In many cell types, this may be through PI3K, in others potentially by NFKB or MAPK. Receptor signaling is often dependent on autocrine factors, and synthesis of autocrine factors will have an impact on the amount of radiation-induced pathway activity. For example, cells expressing TGFα and HB-EGF will generate protection primarily through EGFR. Heregulin and neuregulins will generate protective signals through ERBB4/ERBB3. The impact on radiation-induced signaling of other autocrine and paracrine ligands such as TGFβ and interleukin 6 is likely to be as complicated as described above for the ERBB receptors.


Molecular and Cellular Biology | 2003

Bile Acid Regulation of C/EBPβ, CREB, and c-Jun Function, via the Extracellular Signal-Regulated Kinase and c-Jun NH2-Terminal Kinase Pathways, Modulates the Apoptotic Response of Hepatocytes

Liang Qiao; Song Iy Han; Youwen Fang; Jong Sung Park; Seema Gupta; Donna Gilfor; George P. Amorino; Linda Sealy; John F. Engelhardt; Steven Grant; Philip B. Hylemon; Paul Dent

ABSTRACT Previously, we have demonstrated that deoxycholic acid (DCA)-induced signaling of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in primary hepatocytes is a protective response. In the present study, we examined the roles of the ERK and c-Jun NH2-terminal kinase (JNK) pathways, and downstream transcription factors, in the survival response of hepatocytes. DCA caused activation of the ERK1/2 and JNK1/2 pathways. Inhibition of either DCA-induced ERK1/2 or DCA-induced JNK1/2 signaling enhanced the apoptotic response of hepatocytes. Further analyses demonstrated that DCA-induced JNK2 signaling was cytoprotective whereas DCA-induced JNK1 signaling was cytotoxic. DCA-induced ERK1/2 activation was responsible for increased DNA binding of C/EBPβ, CREB, and c-Jun/AP-1. Inhibition of C/EBPβ, CREB, and c-Jun function promoted apoptosis following DCA treatment, and the level of apoptosis was further increased in the case of CREB and c-Jun, but not C/EBPβ, by inhibition of MEK1/2. The combined loss of CREB and c-Jun function or of C/EBPβ and c-Jun function enhanced DCA-induced apoptosis above the levels resulting from the loss of either factor individually; however, these effects were less than additive. Loss of c-Jun or CREB function correlated with increased expression of FAS death receptor and PUMA and decreased expression of c-FLIP-L and c-FLIP-S, proteins previously implicated in the modulation of the cellular apoptotic response. Collectively, these data demonstrate that multiple DCA-induced signaling pathways and transcription factors control hepatocyte survival.


Oncogene | 2003

ERBB receptor tyrosine kinases and cellular radiation responses

Rupert Schmidt-Ullrich; Joseph N. Contessa; Guido Lammering; George P. Amorino; Peck-Sun Lin

Ionizing radiation induces in autocrine growth-regulated carcinoma and malignant glioma cells powerful cytoprotective responses that confer relative resistance to consecutive radiation exposures. Understanding the mechanisms of these responses should provide new molecular targets for tumor radiosensitization. ERBB and other receptor Tyr kinases have been identified as immediate early response gene products that are activated by radiation within minutes, as by their physiological growth factor ligands, and induce secondary stimulation of cytoplasmic protein kinase cascades. The simultaneous activation of all receptor Tyr kinases and nonreceptor Tyr kinases leads to complex cytoprotective responses including increased cell proliferation, reduced apoptosis and enhanced DNA repair. Since these responses contribute to cellular radioresistance, ERBB1, the most extensively studied ERBB receptor, is examined as a target for tumor cell radiosensitization. The three methods of ERBB1 inhibition include blockade of growth factor binding by monoclonal antibody against the ligand-binding domain, inhibition of the receptor Tyr kinase-mediating receptor activation, and overexpression of a dominant-negative epidermal growth factor receptor-CD533 that lacks the COOH-terminal 533 amino acids and forms nonfunctional heterodimeric complexes with wild-type receptors. All the three approaches enhance radiation toxicity in vitro and in vivo. The different mechanisms of inhibition have contributed to the understanding of cellular responses to radiation, vary in relative effectiveness and pose different challenges for translation.


Oncogene | 2003

EGFRvIII-mediated radioresistance through a strong cytoprotective response.

Guido Lammering; Theodore H. Hewit; Joseph N. Contessa; George P. Amorino; Paul Dent; Rupert Schmidt-Ullrich

The constitutively active, truncated epidermal growth factor receptor EGFRvIII lacks the ability of EGF binding due to a deletion of the NH2-terminal domain. EGFRvIII confers increased tumorigenicity, is coexpressed with EGFR wild type (wt) in human carcinoma and malignant glioma cells when grown as xenografts, but is not expressed in vitro. The effects of EGFRvIII expression on cellular radiation responses were studied in Chinese hamster ovary (CHO) cells transfected with plasmids expressing EGFRvIII (CHO.EGFRvIII) or EGFRwt (CHO.EGFRwt). CHO cells expressing similar levels of either receptor were employed to define their roles in response to EGF and ionizing radiation. EGF activated EGFRwt with no effect on EGFRvIII. In contrast, a single radiation exposure of 2 Gy resulted in a 2.8- and 4.3-fold increase in Tyr phosphorylation of EGFRwt and EGFRvIII, respectively. Downstream consequences of this radiation-induced activation were examined by inhibiting EGFRwt and EGFRvIII with AG1478 (kinase inhibitor). The radiation-induced 8.5-fold activation of the pro-proliferative mitogen-activated protein kinase and the 3.2-fold stimulation of the antiapoptotic AKT/phosphatidylinositol-3-kinase pathways by EGFRvIII far exceeded that in CHO.EGFR wt cells. Thus, based on colony formation and apoptosis assays, EGFRvIII expression conferred a stronger cytoprotective response to radiation than EGFRwt, resulting in relative radioresistance. Therefore, disabling EGFRvIII in addition to EGFRwt needs to be considered in any therapeutic approach aimed at targeting EGFR for tumor cell radiosensitization.


International Journal of Radiation Oncology Biology Physics | 1999

Radiopotentiation by the oral platinum agent, JM216: role of repair inhibition.

George P. Amorino; David P. Carbone; David Lebwohl; Hak Choy

PURPOSE To test for in vitro radiopotentiation by the orally-administered platinum (IV) complex, JM216; to compare these results to cisplatin and carboplatin; and to investigate whether the mechanism of radiopotentiation involves repair inhibition of radiation-induced DNA damage. METHODS AND MATERIALS H460 human lung carcinoma cells were incubated with the drugs for 1 h at 37 degrees C, irradiated at room temperature, and returned to 37 degrees C for 20 min. Cells were then rinsed and colony forming ability was assessed. Wild-type V79 Chinese hamster cells and radiosensitive, DNA repair-deficient mutant cells (XR-V15B) were also studied along with H460 cells. Ku86 cDNA, which encodes part of a protein involved in DNA repair, was transfected into XR-V15B cells as previously described. The effect of JM216 on sublethal damage repair (SLDR) was also assessed using split-dose recovery. RESULTS Using equally cytotoxic doses of JM216, cisplatin, and carboplatin, the radiation dose enhancement ratios (DER) were 1.39, 1.31, and 1.20, respectively; the DER with 20 microM JM216 was 1.57. JM216 (20 microM) did not significantly change the final slope of radiation survival curves, but greatly reduced the survival curve shoulder. V79 cells also showed radioenhancement using 20 microM JM216, but no enhancement occurred using XR-V15B cells. Transfection of Ku86 cDNA into XR-V15B cells restored radiopotentiation by JM216 to wild-type V79 levels. In addition, 20 microM JM216 completely inhibited sublethal damage repair in H460 cells. CONCLUSION Our results show that JM216 can potentiate the effects of radiation in human lung cancer cells, and that the mechanism of this effect is probably inhibition of DNA repair by JM216.


International Journal of Radiation Oncology Biology Physics | 2001

THE NOVEL TAXANE ANALOGS, BMS-184476 AND BMS-188797, POTENTIATE THE EFFECTS OF RADIATION THERAPY IN VITRO AND IN VIVO AGAINST HUMAN LUNG CANCER CELLS

Jae Sung Kim; George P. Amorino; Hongryull Pyo; Qianwen Cao; James O. Price; Hak Choy

PURPOSE To evaluate the novel taxane analogs, BMS-184476 and BMS-188797, as potential radiosensitizers in vitro and in vivo. METHODS AND MATERIALS Human H460 lung cancer cells were incubated with either paclitaxel or a taxane analog and irradiated at various times. Surviving fractions were then determined using a clonogenic assay. Three different schedules were used: (A) 1-h drug incubation with radiation at t = 8 h, (B) 1-h drug incubation with radiation at t = 24 h, (C) 24-h drug incubation with radiation immediately after. Cell cycle redistribution by taxanes alone was measured with propidium iodide and flow cytometry. Percent apoptosis was also measured using 7-aminoactinomycin D (7-AAD) staining with flow cytometry. For in vivo studies, H460 cell xenografts were used in nude mice. Tumors were grown s.c. on the flank and then treated with BMS-184476 (10 mg/kg i.p. injection, Days 0, 2, and 4) and/or radiation (2 Gy/day, Days 0-4). Tumor growth delay was then measured for each treatment group. RESULTS The mean in vitro radiation dose enhancement ratios of BMS-184476, BMS-188797, and paclitaxel were 1.76, 1.49, and 1.31 for Schedules A, B, and C, respectively. Isobologram analysis showed that BMS-184476 was synergistic with radiation using Schedule A. Treatment with taxanes caused an increase in the percentage of G2/M cells at the time of irradiation. The mean fold increases in the %G2/M above control values for all three drugs were 5.6, 2.5, and 1.7 for Schedules A, B, and C, respectively. The combined effects of taxanes plus radiation on the induction of apoptosis were additive for all three drugs. In vivo studies showed that BMS-184476 can enhance the effects of fractionated radiotherapy, with an average enhancement factor of 1.66 obtained from three independent experiments. CONCLUSIONS These results demonstrated that the novel taxane analogs, BMS-184476 and BMS-188797, can enhance the effects of radiation in human lung cancer cells both in vitro and in vivo. These data also support the hypothesis that a G2/M block is involved in the radiosensitization caused by the taxanes.


Radiation Research | 2000

Enhancement of Radiation Effects In Vitro by the Estrogen Metabolite 2-Methoxyestradiol

George P. Amorino; Hak Choy

Abstract Amorino, G. P., Freeman, M. L. and Choy, H. Enhancement of Radiation Effects In Vitro by the Estrogen Metabolite 2-Methoxyestradiol. 2-Methoxyestradiol (2-ME) is an endogenous estradiol metabolite that disrupts microtubule function, suppresses murine tumors, and inhibits angiogenesis. Since some microtubule inhibitors have been shown to alter radiosensitivity, we have evaluated 2-ME as a radiation enhancer in vitro. H460 human lung cancer cells were plated, treated with 2-ME for 24 h, and irradiated; then colony-forming ability was assessed. The radiation dose enhancement ratios (DERs) using this protocol were 1.3, 1.8 and 2.1 for 1, 1.5 and 2 μM 2-ME, respectively. Using a single-cell plating protocol, the respective DERs were 1.2, 1.5 and 1.8. The parent compound of 2-ME, β-estradiol, did not enhance radiation effects at equally cytotoxic doses. Isobologram analysis showed that 1 μM 2-ME was additive with radiation, but that 1.5 and 2 μM were synergistic. Cell cycle analysis showed a dose-dependent increase in the percentage of cells in the radiosensitive G2/M phase after a 24-h treatment with 2-ME; a threefold increase in the percentage of cells in G2/M phase was observed using 2 μM 2-ME. Treatment with 2 μM 2-ME almost completely inhibited repair of sublethal damage (SLD) as shown using split-dose recovery. Radiosensitive, repair-deficient murine SCID (severe combined immunodeficient) cells did not show enhancement of radiation effects with 2 μM 2-ME, but enhancement was observed in the wild-type parental cells (CB-17). SCID cells complemented with human DNA-dependent protein kinase restored radioenhancement by 2-ME. In addition, MCF-7 breast cancer cells were also radiosensitized by 2 μM 2-ME (DER = 2.1). These data suggest that 2-ME is a potential radiation sensitizer, in addition to its previously reported antitumor and antiangiogenic properties. We have verified the antiangiogenic activity of 2-ME in vitro using human endothelial cells. Based on these results, we hypothesize that the mechanism of radiation enhancement may involve redistribution of cells into G2/M phase by 2-ME, and that the resulting population of cells is repair-deficient and thus radiosensitive.


Radiation Research | 2001

Enhancement of tumor oxygenation and radiation response by the allosteric effector of hemoglobin, RSR13

George P. Amorino; Haakil Lee; George E. Holburn; Cynthia B. Paschal; Sherri K. Hercules; Yu Shyr; Robert P. Steffen; Hak Choy

Abstract Amorino, G. P., Lee, H., Holburn, G. E., Paschal, C. B., Hercules, S. K., Shyr, Y., Steffen, R. P. and Choy, H. Enhancement of Tumor Oxygenation and Radiation Response by the Allosteric Effector of Hemoglobin, RSR13. Radiat. Res. 156, 294–300 (2001). Prior studies using pO2 microelectrodes have shown that RSR13, an allosteric modifier of hemoglobin, increases tissue oxygenation in vivo. Recently, measurements of tissue oxygenation have been performed by many investigators using blood oxygen level-dependent magnetic resonance imaging (BOLD MRI). In this study, we tested the hypothesis that the BOLD MRI signal ratio in tumors will change after administration of RSR13. NCI-H460 human lung carcinoma cells were used as a xenograft in athymic nude mice. Mice with 1-cm3 tumors in the flank were anesthetized and mounted on the MRI apparatus, and various doses of RSR13 were administered intraperitoneally (i.p.). MR images were then acquired at 10-min intervals for up to 60 min after injection. The effect of RSR13 on tumor response was studied using the same mouse xenograft model with tumor growth delay measurements. RSR13 increased the MRI signal ratio [Intensity(t)/Intensity(t = 0)] in a dose-dependent manner, with maximum increases occurring 30 min after RSR13 was administered. An RSR13 dose of 200 mg/kg proved to be optimum. Since the MRI signal ratio has been shown previously to be linearly related to tissue oxygenation, the changes in the MRI signal ratio can be attributed to changes in tumor oxygen levels. Using a 200-mg/kg dose of RSR13, with a 10-Gy dose of radiation administered to tumors 30 min later, enhancement of radiation-induced tumor growth delay by RSR13 was observed (enhancement factor = 2.8). Thus our MRI results support and verify the previously reported RSR13-induced increase in tumor oxygenation obtained using pO2 microelectrodes. Based upon these results and other previous studies, the mechanism of enhancement of the effect of radiation by RSR13 probably involves an increase in tumor oxygenation.


Cancer Chemotherapy and Pharmacology | 2000

Combined effects of the orally active cisplatin analog, JM216, and radiation in antitumor therapy

George P. Amorino; Peter Mohr; Sherri K. Hercules; Hongryull Pyo; Hak Choy

Purpose: We evaluated the orally administered platinum agent, JM216, in combination with ionizing radiation both in vivo and in vitro against human tumor cells. Methods: H460 human lung carcinoma cells were used as a subcutaneous xenograft in nude mice. JM216 (30 mg/kg) was administered orally, and radiation treatments (2 Gy) were given 1 h after JM216 delivery for five consecutive days. For in vitro analysis, attached H460 cells were treated with JM216 (15 μM) for 1 h and then irradiated. Cells were rinsed 20 min later, and survival was determined by clonogenic assay. Results: Tumor growth delay measurements showed that the combination of JM216 and radiation was additive in vivo, with an enhancement ratio of 1.24. In vitro clonogenic survival experiments demonstrated a dose enhancement ratio of 1.23. Isobologram analysis showed that this interaction was also additive. Conclusions: These data demonstrate that the combination of JM216 and fractionated radiotherapy is more effective against human lung cancer xenografts than either agent alone, and the in vivo results were supported by those observed using an in vitro system with the same tumor cell line.


Radiation Oncology Investigations | 1999

Enhancement of radiation effects by combined docetaxel and carboplatin treatment in vitro

George P. Amorino; Virginia M. Hamilton; Hak Choy

This study was designed to evaluate the combination of docetaxel (Taxotere) and carboplatin for radiopotentiation in vitro. H460 human lung carcinoma cells were treated with docetaxel (or paclitaxel) for 1 h and rinsed. After 24 h, the cells were treated with carboplatin for 1 h, irradiated, and colony forming ability was assesed. Using various doses of docetaxel with 100 microM carboplatin, the dose enhancement ratio (D.E.R.) for drugs only was 1.26. When 25 nM docetaxel was used with various doses of radiation, the radiation D.E.R. was 1.41. With all three agents combined, and after normalization for combined drug effects, the radiation D.E.R. was 1.55. Similar values were obtained using paclitaxel with these agents. Significant redistribution of cells into the radiosensitive G2/M phase was observed using a dose of paclitaxel (750 nM), which also caused radiation enhancement. However, an equally cytotoxic dose of docetaxel (25 nM) did not result in any cell cycle redistribution; this phenomenon was only observed at higher doses. This study shows that the combination of docetaxel and carboplatin enhance the effects of radiation in vitro more effectively than either drug seperately. In addition, our data show that the mechanism of radiopotentiation by docetaxel probably does not involve a G2/M block in H460 cells.

Collaboration


Dive into the George P. Amorino's collaboration.

Top Co-Authors

Avatar

Hak Choy

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hongryull Pyo

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jae Sung Kim

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Dent

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Qianwen Cao

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Mohr

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Steven Grant

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge