Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George Papadopoulos is active.

Publication


Featured researches published by George Papadopoulos.


TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference | 2009

A MEMS sensor for mean shear stress measurements in high-speed turbulent flows with backside interconnects

A. O'Grady; Ronan Larger; Nicholas Tiliakos; George Papadopoulos; Vijay Modi; Luc G. Fréchette

A floating-element capacitive MEMS shear stress flow sensor was fabricated and shown to successfully measure mean-turbulent skin friction in high-speed compressible duct flow. The sensor was designed for harsh environments (e.g. high-temperature, high-shear stress) with novel through-substrate interconnects for robust packaging and remote circuitry for capacitance measurement. This paper extends our previous work on the MEMS shear stress sensor design [1] and backside interconnect process development [2] to provide complete device fabrication and testing in a high-speed flow.


ASME/JSME 2007 5th Joint Fluids Engineering Conference | 2007

A MEMS-Based Shear Stress Sensor for High Temperature Applications

Nicholas Tiliakos; George Papadopoulos; Andrew M. O’Grady; Vijay Modi; Ronan Larger; Luc G. Fréchette

Micro-electro-mechanical systems (MEMS) are an enabling technology that has lead to various miniature sensor concepts. Utilizing recent advances in silicon carbide (SiC) MEMS fabrication techniques allows for the development of a new series of sensors that leverages the high temperature capabilities of SiC. One such sensor concept is a shear stress sensor that can operate over a high dynamic range, and at very high temperatures, with an application emphasis on ground and flight testing in supersonic and hypersonic flow. The application of this fundamental sensor element and capacitance sensing design to very high temperature and very high shear environment, however, brings another set of challenges that involve the associated packaging and electrical control scheme. While this project is still a work in progress, we present an overview of our efforts to design, develop, fabricate and test a MEMS shear stress sensor for hypersonic aeropropulsion test and evaluation applications.


26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference | 2008

Preliminary Testing of a MEMS-based Shear Stress Sensor for High Speed Flow Applications

Nicholas Tiliakos; George Papadopoulos; Vijay Modi; Ronan Larger; Luc G. Fréchette

Micro-electro-mechanical systems (MEMS) are an enabling technology that has led to various miniature sensor concepts. One such sensor concept is a shear stress sensor that can operate over a wide dynamic range, and at very high temperatures, with an application emphasis on ground and flight testing in supersonic and hypersonic flow. In this paper we present our research and development efforts for a MEMS-based shear stress sensor that can be used to directly measure the shear stress on ground based articles tested in high speed tunnels, and eventually on flight-test articles. Preliminary data showing sensor operation in high subsonic flow is presented and discussed.


AIAA Infotech@Aerospace 2010 | 2010

Non-Intrusive Sensor for in-situ Measurement of Recession Rate of Heat Shield Ablatives

George Papadopoulos; Nicholas Tiliakos; Gabriel Benel; Clint Thomson

The development of a new sensor for in-situ non-intrusive measurements of recession rate of heat shield ablative materials is described. The sensor utilizes a focused ultrasound approach to non-intrusively detect the ablative materials surface loss while simultaneously correcting for acoustic velocity dependencies on temperature. The latter correction is done via a closed loop feedback approach that yields the average acoustic velocity through the ablative material. The multi-source focusing approach is atypical of current ultrasound based sensors used for ablation recession rate measurement, which require a-priori knowledge of temperature distribution within the ablative to yield accurate data on recession rate. The paper describes the early development of the sensor system resulting in a proof-of-concept breadboard system that demonstrates its unique operational aspects and possibilities as a heat shield health monitoring system for future spacecraft.


50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition | 2012

Real-Time Ablation Recession Rate Sensor System for Advanced Reentry Vehicles

George Papadopoulos; Nicholas Tiliakos; Clint Thomson

The development of a new sensor system for in-situ, real-time measurements of recession rate of heat shield ablative materials is described. The sensor utilizes a focused ultrasound approach to non-intrusively detect the ablative materials surface loss while simultaneously correcting for acoustic velocity dependencies on temperature. The latter correction is done via a closed loop feedback approach. The multi-source focusing approach is atypical of current ultrasound based sensors used for ablation recession rate measurement, which require a-priori knowledge of temperature distribution within the ablative to yield accurate data on recession rate. The paper describes the operating principles of the sensor and reports on results obtained in testing the breadboard sensor system in a relevant environment at ATK GASL’s POET facility.


Volume 6: Fluids and Thermal Systems; Advances for Process Industries, Parts A and B | 2011

Performance Characteristics of a Variable Density Pin Array Micro-Heat Exchanger

George Papadopoulos; Nicholas Tiliakos; Gabriel Benel

The design, fabrication and preliminary performance of a variable density pin array micro heat exchanger for micro-cooling applications is reported. Various pin diameters and density configurations were analyzed for their ability to provide maximum uniform heat transfer over the active area of the micro-heat exchanger using air as the working fluid for maximum mass flow rates through the micro-heat exchanger in the range of 40 mg/sec to 60 mg/sec. Fabrication of the micro-heat exchanger was performed using deep reactive ion etching (DRIE) technique on a 0.5 mm thick silicon wafer with nominal feature sizes in the range of 5 microns to 20 microns. Performance data is presented based on analysis and comparison to a baseline configuration with no pins.Copyright


27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference | 2010

Testing of an Optically-Coupled Micro-Sensor for Wall Shear in Hypersonic Flow

George Papadopoulos; Gabriel Benel

The development of an optically-coupled micro-sensor for wall shear is reported with application to hypersonic flow testing. The sensor device is made of silicon carbide and packaged to withstand a high temperature environment in excess of 1000 deg Celsius. Fiber optics are used to send and receive laser light for detecting the deflection of the sensor element as it is pulled by the flow and thus infer wall shear stress. Testing of the prototype sensor system in hypersonic flow demonstrates the sensors survivability and operational potential.


Archive | 2011

Non-intrusive sensor for in-situ measurement of recession rate of ablative and eroding materials

George Papadopoulos; Nicholas Tiliakos; Gabriel Benel; Clint Thomson


Archive | 2014

Methods and apparatuses for autonomous flight termination

George Papadopoulos; Derek R. DeVries; Steven W. Thomas; Timothy J. Van Dixhorn; Charles L. Weigel; Charles L. Dedon


Archive | 2009

OPTICAL COUPLED SENSORS FOR HARSH ENVIRONMENTS

George Papadopoulos

Collaboration


Dive into the George Papadopoulos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronan Larger

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge