Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George Q. Perrin is active.

Publication


Featured researches published by George Q. Perrin.


Cancer Research | 2011

Tumor-Associated Macrophages Mediate Immunosuppression in the Renal Cancer Microenvironment by Activating the 15-Lipoxygenase-2 Pathway

Irina Daurkin; Evgeniy Eruslanov; Taryn L. Stoffs; George Q. Perrin; Chester B. Algood; Scott M. Gilbert; Charles J. Rosser; Li-Ming Su; Johannes Vieweg; Sergei Kusmartsev

Renal cell carcinoma (RCC), the most common human kidney cancer, is frequently infiltrated with tumor-associated macrophages (TAM) that can promote malignant progression. Here, we show that TAMs isolated from human RCC produce substantial amounts of the proinflammatory chemokine CCL2 and immunosuppressive cytokine IL-10, in addition to enhanced eicosanoid production via an activated 15-lipoxygenase-2 (15-LOX2) pathway. TAMs isolated from RCC tumors had a high 15-LOX2 expression and secreted substantial amounts of 15(S)-hydroxyeicosatetraenoic acid, its major bioactive lipid product. Inhibition of lipoxygenase activity significantly reduced production of CCL2 and IL-10 by RCC TAMs. In addition, TAMs isolated from RCC were capable of inducing in T lymphocytes, the pivotal T regulatory cell transcription factor forkhead box P3 (FOXP3), and the inhibitory cytotoxic T-lymphocyte antigen 4 (CTLA-4) coreceptor. However, this TAM-mediated induction of FOXP3 and CTLA-4 in T cells was independent of lipoxygenase and could not be reversed by inhibiting lipoxygenase activity. Collectively, our results show that TAMs, often present in RCCs, display enhanced 15-LOX2 activity that contributes to RCC-related inflammation, immunosuppression, and malignant progression. Furthermore, we show that TAMs mediate the development of immune tolerance through both 15-LOX2-dependent and 15-LOX2-independent pathways. We propose that manipulating LOX-dependent arachidonic acid metabolism in the tumor microenvironment could offer new strategies to block cancer-related inflammation and immune escape in patients with RCC.


International Journal of Cancer | 2012

Circulating and tumor-infiltrating myeloid cell subsets in patients with bladder cancer

Evgeniy Eruslanov; Molly M. Neuberger; Irina Daurkin; George Q. Perrin; Chester B. Algood; Philipp Dahm; Charles J. Rosser; Johannes Vieweg; Scott M. Gilbert; Sergei Kusmartsev

Both cancer‐related inflammation and tumor‐induced immune suppression are associated with expansion of myeloid cell subsets including myeloid‐derived suppressor cells. However, little known regarding characteristics of myeloid cells in patients with bladder cancer. In this study, we analyzed myeloid cells from peripheral blood (PBMC) and tumor tissue that were collected from patients with superficial noninvasive and invasive urothelial carcinomas. Our results demonstrate that PBMC from bladder cancer patients contain two major CD11b myeloid cell subsets: granulocyte‐type CD15high CD33low cells and monocyte‐type CD15low CD33high cells. The number of circulating granulocytic but not monocytic myeloid cells in cancer patients was markedly increased when compared to healthy individuals. Both myeloid cell subsets from cancer patients were highly activated and produced substantial amounts of proinflammatory chemokines/cytokines including CCL2, CCL3, CCL4, G‐CSF, IL‐8 and IL‐6. Granulocytic myeloid cells were able to inhibit in vitro T cell proliferation through induction of CD4+Foxp3+ T regulatory cells. Analysis of bladder cancer tissues revealed that tumors were infiltrated with monocyte–macrophage CD11b+HLA‐DR+ and granulocytic CD11b+CD15+HLA‐DR‐ myeloid cells. Collectively, this study identifies myeloid cell subsets in patients with bladder cancer. We demonstrate that these highly activated inflammatory myeloid cells represent a source of multiple chemokines/cytokines and may contribute to inflammation and immune dysfunction in bladder cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Activation of the NF-κB pathway by adeno-associated virus (AAV) vectors and its implications in immune response and gene therapy

Giridhara R. Jayandharan; George Aslanidi; Ashley T. Martino; Stephan C. Jahn; George Q. Perrin; Roland W. Herzog; Arun Srivastava

Because our in silico analysis with a human transcription factor database demonstrated the presence of several binding sites for NF-κB, a central regulator of cellular immune and inflammatory responses, in the adeno-associated virus (AAV) genome, we investigated whether AAV uses NF-κB during its life cycle. We used small molecule modulators of NF-κB in HeLa cells transduced with recombinant AAV vectors. VP16, an NF-κB activator, augmented AAV vector-mediated transgene expression up to 25-fold. Of the two NF-κB inhibitors, Bay11, which blocks both the canonical and the alternative NF-κB pathways, totally ablated transgene expression, whereas pyrrolidone dithiocarbamate, which interferes with the classical NF-κB pathway, had no effect. Western blot analyses confirmed the abundance of the nuclear p52 protein component of the alternative NF-κB pathway in the presence of VP16, which was ablated by Bay11, suggesting that AAV transduction activates the alternative NF-κB pathway. In vivo, hepatic AAV gene transfer activated the canonical NF-κB pathway within 2 h, resulting in expression of proinflammatory cytokines and chemokines (likely reflecting the sensing of viral particles by antigen-presenting cells), whereas the alternative pathway was activated by 9 h. Bay11 effectively blocked activation of both pathways without interfering with long-term transgene expression while eliminating proinflammatory cytokine expression. These studies suggest that transient immunosuppression with NF-κB inhibitors before transduction with AAV vectors should lead to a dampened immune response, which has significant implications in the optimal use of AAV vectors in human gene therapy.


Embo Molecular Medicine | 2013

Effective gene therapy for haemophilic mice with pathogenic factor IX antibodies

David M. Markusic; Brad E. Hoffman; George Q. Perrin; Sushrusha Nayak; Xiaomei Wang; Paul A. LoDuca; Katherine A. High; Roland W. Herzog

Formation of pathogenic antibodies is a major problem in replacement therapies for inherited protein deficiencies. For example, antibodies to coagulation factors (‘inhibitors’) seriously complicate treatment of haemophilia. While immune tolerance induction (ITI) protocols have been developed, inhibitors against factor IX (FIX) are difficult to eradicate due to anaphylactic reactions and nephrotic syndrome and thus substantially elevate risks for morbidity and mortality. However, hepatic gene transfer with an adeno‐associated virus (AAV) serotype 8 vector expressing FIX (at levels of ≥4% of normal) rapidly reversed pre‐existing high‐titre inhibitors in haemophilia B mice, eliminated antibody production by B cells, desensitized from anaphylaxis (even if protein therapy was resumed) and provided long‐term correction. High levels of FIX protein suppressed memory B cells and increased Treg induction, indicating direct and indirect mechanisms of suppression of inhibitor formation. Persistent presence of Treg was required to prevent relapse of antibodies. Together, these data suggest that hepatic gene transfer‐based ITI provides a safe and effective alternative to eradicate inhibitors. This strategy may be broadly applicable to reversal of antibodies in different genetic diseases.


Experimental Biology and Medicine | 2001

Superantigens: The Good, the Bad, and the Ugly:

Barbara A. Torres; Scott L. Kominsky; George Q. Perrin; Amy Hobeika; Howard M. Johnson

Increasing evidence suggests that superantigens play a role in Immune-mediated diseases. Superantigens are potent activators of CD4* T cells, causing rapid and massive proliferation of cells and cytokine production. This characteristic of superantigens can be exploited in diseases where strong immunologic responses are required, such as in the B16F10 animal model of melanoma. Superantigen administration is able to significantly enhance Ineffective anti-tumor Immune responses, resulting in potent and long-lived protective anti-tumor immunity. However, superantigens are more well-known for the role they play in diseases. Studies using an animal model for neurologic demy-elinatlng diseases such as multiple sclerosis show that superantigens can induce severe relapses and activate auto-reactive T cells not involved in the Initial bout of disease. This may also involve epitope spreading of disease. Superantigens have also been implicated in acute diseases such as food poisoning and TSS, and in chronic diseases such as psoriasis and rheumatoid arthritis. Viral superantigens are also involved in the disease process, including superantigens derived from human Immunodeficiency virus and mouse mammary tumor virus. Finally, immunotherapies that ameliorate the role played by superantigens in disease are discussed.


Molecular therapy. Methods & clinical development | 2014

Ex vivo expanded autologous polyclonal regulatory T cells suppress inhibitor formation in hemophilia

Debalina Sarkar; Moanaro Biswas; Gongxian Liao; Howard R. Seay; George Q. Perrin; David M. Markusic; Brad E. Hoffman; Todd M. Brusko; Cox Terhorst; Roland W. Herzog

Adoptive cell therapy utilizing ex vivo expanded polyclonal CD4+CD25+FOXP3+ regulatory T cells (Treg) is in use in clinical trials for the treatment of type 1 diabetes and prevention of graft versus host disease in bone marrow transplantation. Here, we seek to evaluate this approach in the treatment of inherited protein deficiencies, i.e., hemophilia, which is often complicated by antibody formation against the therapeutic protein. Treg from mice that express green fluorescent protein–marked FoxP3 were highly purified by two-step magnetic/flow sorting and ex vivo expanded 50- to 100-fold over a 2-week culture period upon stimulation with antibody-coated microbeads. FoxP3 expression was maintained in >80% of expanded Treg, which also expressed high levels of CD62L and CTLA-4. Transplanted Treg suppressed inhibitory antibody formation against coagulation factors VIII and IX in protein and gene therapies in strain-matched hemophilia A and B mice, including in mice with pre-existing antibodies. Although transplanted Treg became undetectable within 2 weeks, suppression persisted for >2 months. Additional studies suggested that antigen-specific suppression emerged due to induction of endogenous Treg. The outcomes of these studies support the concept that cell therapy with ex vivo expanded autologous Treg can be used successfully to minimize immune responses in gene and protein replacement therapies.


Frontiers in Microbiology | 2011

Prevention and Reversal of Antibody Responses Against Factor IX in Gene Therapy for Hemophilia B

Sushrusha Nayak; Debalina Sarkar; George Q. Perrin; Babak Moghimi; Brad E. Hoffman; Shangzhen Zhou; Barry J. Byrne; Roland W. Herzog

Intramuscular (IM) administration of an adeno-associated viral (AAV) vector represents a simple and safe method of gene transfer for treatment of the X-linked bleeding disorder hemophilia B (factor IX, F.IX, deficiency). However, the approach is hampered by an increased risk of immune responses against F.IX. Previously, we demonstrated that the drug cocktail of immune suppressants rapamycin, IL-10, and a specific peptide (encoding a dominant CD4+ T cell epitope) caused an induction of regulatory T cells (Treg) with a concomitant apoptosis of antigen-specific effector T cells (Nayak et al., 2009). This protocol was effective in preventing inhibitory antibody formation against human F.IX (hF.IX) in muscle gene transfer to C3H/HeJ hemophilia B mice (with targeted F9 gene deletion). Here, we show that this protocol can also be used to reverse inhibitor formation. IM injection of AAV1–hF.IX vector resulted in inhibitors of on average 8–10 BU within 1 month. Subsequent treatment with the tolerogenic cocktail accomplished a rapid reduction of hF.IX-specific antibodies to <2 BU, which lasted for >4.5 months. Systemic hF.IX expression increased from undetectable to >200 ng/ml, and coagulation times improved. In addition, we developed an alternative prophylactic protocol against inhibitor formation that did not require knowledge of T cell epitopes, consisting of daily oral administration of rapamycin for 1-month combined with frequent, low-dose intravenous injection of hF.IX protein. Experiments in T cell receptor transgenic mice showed that the route and dosing schedule of drug administration substantially affected Treg induction. When combined with intravenous antigen administration, oral delivery of rapamycin had to be performed daily in order to induce Treg, which were suppressive and phenotypically comparable to natural Treg.


Journal of Immunology | 2002

Superantigen Enhancement of Specific Immunity: Antibody Production and Signaling Pathways

Barbara A. Torres; George Q. Perrin; Mustafa G. Mujtaba; Prem S. Subramaniam; Amy K. Anderson; Howard M. Johnson

Superantigens are microbial proteins that induce massive activation, proliferation, and cytokine production by CD4+ T cells via specific Vβ elements on the TCR. In this study we examine superantigen enhancement of Ag-specific CD4+ T cell activity for humoral B cell responses to T-dependent Ags BSA and HIV gp120 envelope, type I T-independent Ag LPS, and type II T-independent Ag pneumococcal polysaccharides. Injection of BSA followed by a combination of superantigens staphylococcal enterotoxin A and staphylococcal enterotoxin B (SEB) 7 days later enhanced the anti-BSA Ab response in mice ∼4-fold as compared with mice given BSA alone. The anti-gp120 response was enhanced ∼3-fold by superantigens. The type II T-independent Ag pneumococcal polysaccharide response was enhanced ∼2.3-fold by superantigens, whereas no effect was observed on the response to the type I T-independent Ag LPS. The superantigen effect was completely blocked by the CD4+ T cell inhibitory cytokine IL-10. SEB-stimulated human CD4+ T cells were examined to determine the role of the mitogen-activated protein (MAP) kinase signal transduction pathway in superantigen activation of T cells. Inhibitors of the mitogen pathway of MAP kinase blocked SEB-induced proliferation and IFN-γ production, while an inhibitor of the p38 stress pathway had no effect. Consistent with this, SEB activated extracellular signal-regulated kinase/MAP kinase as well as MAP kinase-interacting kinase, a kinase that phosphorylates eIF4E, which is an important component of the eukaryotic protein synthesis initiation complex. Both kinases were inhibited by IL-10. Thus, superantigens enhance humoral immunity via Ag-specific CD4+ T cells involving the stress-independent pathway of MAP kinase.


Cancer Biology & Therapy | 2010

Analysis of steroid hormone effects on xenografted human NF1 tumor schwann cells.

Hua Li; Xuelian Zhang; Lauren Fishbein; Frederick Kweh; Martha Campbell-Thompson; George Q. Perrin; David Muir; Margaret R. Wallace

The neurofibroma, a common feature of neurofibromatosis type 1 (NF1), is a benign peripheral nerve sheath tumor that contains predominantly Schwann cells (SC). There are reports that neurofibroma growth may be affected by hormonal changes, particularly in puberty and pregnancy, suggesting an influence by steroid hormones. This study examined the effects of estrogen and progesterone on proliferation and apoptosis in a panel of NF1 tumor xenografts. SC-enriched cultures derived from three human NF1 tumor types (dermal neurofibroma, plexiform neurofibroma, and malignant peripheral nerve sheath tumor (MPNST)) were xenografted in sciatic nerves of ovariectomized scid /Nf1-/+ mice. At the same time, mice were implanted with time-release pellets for systemic delivery of progesterone, estrogen or placebo. Proliferation and apoptosis by the xenografted SC were examined two months after implantation, by Ki67 immunolabeling and TUNEL. Estrogen was found to increase the growth of all three MPNST xenografts. Progesterone was associated with increased growth in two of the three MPNSTs, yet decreased growth of the other. Of the four dermal neurofibroma xenografts tested, estrogen caused a statistically significant growth increase in one, and progesterone did in another. Of the four plexiform neurofibroma SC xenografts, estrogen and progesterone significantly decreased growth in one of the xenografts, but not the other three. No relationship of patient age or gender to steroid response was observed. These findings indicate that human NF1 Schwann cells derived from some tumors show increased proliferation or decreased apoptosis in response to particular steroid hormones in a mouse xenograft model. This suggests that anti-estrogen or anti-progesterone therapies may be worth considering for specific NF1 neurofibromas and MPNSTs.


Laboratory Investigation | 2007

An orthotopic xenograft model of intraneural NF1 MPNST suggests a potential association between steroid hormones and tumor cell proliferation

George Q. Perrin; Hua Li; Lauren Fishbein; Susanne A. M. Thomson; Min S Hwang; Mark T. Scarborough; Anthony T. Yachnis; Margaret R. Wallace; Thomas H. Mareci; David Muir

Malignant peripheral nerve sheath tumors (MPNST) are the most aggressive cancers associated with neurofibromatosis type 1 (NF1). Here we report a practical and reproducible model of intraneural NF1 MPNST, by orthotopic xenograft of an immortal human NF1 tumor-derived Schwann cell line into the sciatic nerves of female scid mice. Intraneural injection of the cell line sNF96.2 consistently produced MPNST-like tumors that were highly cellular and showed extensive intraneural growth. These xenografts had a high proliferative index, were angiogenic, had significant mast cell infiltration and rapidly dominated the host nerve. The histopathology of engrafted intraneural tumors was consistent with that of human NF1 MPNST. Xenograft tumors were readily examined by magnetic resonance imaging, which also was used to assess tumor vascularity. In addition, the intraneural proliferation of sNF96.2 cell tumors was decreased in ovariectomized mice, while replacement of estrogen or progesterone restored tumor cell proliferation. This suggests a potential role for steroid hormones in supporting tumor cell growth of this MPNST cell line in vivo. The controlled orthotopic implantation of sNF96.2 cells provides for the precise initiation of intraneural MPNST-like tumors in a model system suitable for therapeutic interventions, including inhibitors of angiogenesis and further study of steroid hormone effects on tumor cell growth.

Collaboration


Dive into the George Q. Perrin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cox Terhorst

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge