Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George R. Chapman is active.

Publication


Featured researches published by George R. Chapman.


Journal of Applied Physics | 1996

ELECTRICAL AND OPTICAL PROPERTIES OF INFRARED PHOTODIODES USING THE INAS/GA1-XINXSB SUPERLATTICE IN HETEROJUNCTIONS WITH GASB

J. L. Johnson; L. A. Samoska; A. C. Gossard; J. L. Merz; Mike D. Jack; George R. Chapman; B. A. Baumgratz; Ken Kosai; S. M. Johnson

The InAs/Ga1−xInxSb strained‐layer superlattice (SLS) holds promise as an alternative III–V semiconductor system for long wavelength infrared detectors. In this article, we present the first investigation, to the best of our knowledge, of heterojunction photodiodes using this new material. The devices were grown by molecular beam epitaxy on GaSb substrates, and are comprised of a 38 A InAs/16 A Ga0.64In0.36Sb SLS used in double heterojunctions with GaSb contact layers. The structures were designed to optimize the quantum efficiency while minimizing transport barriers at the heterointerfaces. The photodiodes are assessed through the correlation of their performance with the SLS material quality and the detector design. X‐ray diffraction, absorption, and Hall measurements are used to determine the SLS material properties. The electrical and optical properties of the photodiodes are determined using current–voltage and spectral responsivity measurements. At 78 K, these devices exhibit rectifying electrical b...


Journal of Crystal Growth | 1997

High performance HgCdTe two-color infrared detectors grown by molecular beam epitaxy

Rajesh D. Rajavel; D. M. Jamba; O. K. Wu; J. E. Jensen; Jerry A. Wilson; E. A. Patten; K. Kosai; P. Goetz; George R. Chapman; W.A. Radford

High-performance in situ doped two-color detectors with the n-p-n architecture for the sequential detection of mid: and long-wave infrared radiation were grown by molecular beam epitaxy. These detector structures were twin-free, and exhibited narrow rocking curves ( 45 arcsec) as determined by X-ray measurements. The near surface etch pit densities in these device structures were typically (2-3) x 10 6 cm -2 . The structures were processed as mesas and their electrical properties measured. The spectral response of the mid-wave and long-wave diodes in the integrated detector were characterized by sharp turn-on and turn-off in both bands. Average R o A values of 100 Ω cm 2 at 10.5 μm and 5.5 x 10 5 Ω cm 2 at 5.5 μm were measured at 77 K. These results are comparable to those of the best unispectral detectors and represents a significant milestone for MBE-grown HgCdTe two-color devices


SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation | 1994

Integrated two-color detection for advanced focal plane array (FPA) applications

Jerry A. Wilson; E. A. Patten; George R. Chapman; K. Kosai; Bonnie A. Baumgratz; P. Goetz; S. J. Tighe; R. F. Risser; R. F. Herald; W. A. Radford; Tse Tung; W. A. Terre

Integrated two-color detector arrays offer significant system advantages (over separate arrays for each color) where two-color information is required. Using a single array with co-located spectral band sensitivities guarantees perfect pixel registration between the two different spectral band images. These two-color IR detectors can be made in HgCdTe using a pair of back-to-back-diodes incorporated in a triple-layer heterojunction (TLHJ). Use of HgCdTe allows any combination of bands between SWIR and LWIR. TLHJs can be operated in either a sequential or simultaneous mode by leaving the layer common to the two diodes floating or by contacting it. The effect of the choice of spectral bands on the meaning of sequential and simultaneous operation is discussed. State-of-the-art trend line performance for each spectral band of a TLHJ has been demonstrated using an all-LPE HgCdTe technology at SBRC. Mean MWIR RrA of 2 X 107 (Omega) -cm2 and LWIR of 1.6 X 103 (Omega) -cm2 have been shown. Quantum efficiencies are typical of trend line PV HgCdTe. Very high quality imaging has been demonstrated using 64 X 64 sensor chip assemblies in a sequential mode incorporating the above TLHJs. Simultaneous detectors have been made in miniarrays and test structures of various size unit cells. 128 X 128 simultaneous arrays are under study. Imaging and test results (performance and uniformity) for each band are comparable to state-of-the-art single-color HgCdTe arrays.


Journal of Crystal Growth | 1999

Mbe growth of HgCdTe avalanche photodiode structures for low-noise 1.55 μm photodetection

T. J. de Lyon; Bonnie A. Baumgratz; George R. Chapman; Eli E. Gordon; Andrew T. Hunter; Mike D. Jack; J. E. Jensen; W. Johnson; B Johs; K. Kosai; W. Larsen; G. L. Olson; M. Sen; Bobby Walker; O. K. Wu

Molecular-beam epitaxy (MBE) has been utilized to fabricate HgCdTe heterostructure separate absorption and multiplication avalanche photodiodes (SAM-APD) sensitive to infrared radiation in the 1.1-1.6 μm spectral range, as an alternative technology to existing III-V APD detectors. Device structures were grown on CdZnTe(211)B substrates using CdTe, Te, and Hg sources with in situ In and As doping. The composition of the HgCdTe alloy layers was adjusted to achieve both efficient absorption of IR radiation in the 1.1-1.6 μm spectral range and low excess-noise avalanche multiplication. The Hg 1-x Cd x Te alloy composition in the gain region of the device, = 0.73, was selected to achieve equality between the bandgap energy and spin-orbit splitting to resonantly enhance the impact ionization of holes in the split-off valence band. The appropriate value of this alloy composition was determined from analysis of the 300 K bandgap and spin-orbit splitting energies of a set of calibration layers, using a combination of IR transmission and spectroscopic ellipsometry measurements. MBE-grown APD epitaxial wafers were processed into passivated mesa-type discrete device structures and diode mini-arrays using conventional HgCdTe process technology. Device spectral response, dark current density, and avalanche gain measurements were performed on the processed wafers. Avalanche gains in the range of 30-40 at reverse bias of 85-90 V and array-median dark current density below 2 x 10 -4 A/cm 2 at 40 V reverse bias have been demonstrated.


International Symposium on Optical Science and Technology | 2001

Advances in linear and area HgCdTe APD arrays for eyesafe LADAR sensors

Michael D. Jack; James F. Asbrock; Christen M. Anderson; Steven L. Bailey; George R. Chapman; Eli E. Gordon; P. E. Herning; Murray H. Kalisher; K. Kosai; V. Liquori; Valerie Randall; Joseph P. Rosbeck; Sanghamitra Sen; P. Wetzel; Maurice J. Halmos; Patrick A. Trotta; Andrew T. Hunter; John E. Jensen; Terence J. de Lyon; W. Johnson; Bobby Walker; Ward Trussel; Andy Hutchinson; Raymond S. Balcerak

HgCdTe APDs and APD arrays offer unique advantages for high-performance eyesafe LADAR sensors. These include: operation at room temperature, low-excess noise, high gain, high-quantum efficiency at eyesafe wavelengths, GHz bandwidth, and high-packing density. The utility of these benefits for systems are being demonstrated for both linear and area array sensors. Raytheon has fabricated 32 element linear APD arrays utilizing liquid phase epitaxy (LPE), and packaged and integrating these arrays with low-noise amplifiers. Typical better APDs configured as 50-micron square pixels and fabricated utilizing RIE, have demonstrated high fill factors, low crosstalk, excellent uniformity, low dark currents, and noise equivalent power (NEP) from 1-2 nW. Two units have been delivered to NVESD, assembled with range extraction electronics, and integrated into the CELRAP laser radar system. Tests on these sensors in July and October 2000 have demonstrated excellent functionality, detection of 1-cm wires, and range imaging. Work is presently underway under DARPAs 3-D imaging Sensor Program to extend this excellent performance to area arrays. High-density arrays have been fabricated using LPE and molecular beam epitaxy (MBE). HgCdTe APD arrays have been made in 5 X 5, 10 X 10 and larger formats. Initial data shows excellent typical better APD performance with unmultiplied dark current < 10 nA; and NEP < 2.0 nW at a gain of 10.


Proceedings of SPIE | 2011

HgCdTe APD-based linear-mode photon counting components and ladar receivers

Michael D. Jack; Justin Gordon Adams Wehner; John Edwards; George R. Chapman; Donald N. B. Hall; Shane Jacobson

Linear mode photon counting (LMPC) provides significant advantages in comparison with Geiger Mode (GM) Photon Counting including absence of after-pulsing, nanosecond pulse to pulse temporal resolution and robust operation in the present of high density obscurants or variable reflectivity objects. For this reason Raytheon has developed and previously reported on unique linear mode photon counting components and modules based on combining advanced APDs and advanced high gain circuits. By using HgCdTe APDs we enable Poisson number preserving photon counting. A metric of photon counting technology is dark count rate and detection probability. In this paper we report on a performance breakthrough resulting from improvement in design, process and readout operation enabling >10x reduction in dark counts rate to ~10,000 cps and >104x reduction in surface dark current enabling long 10 ms integration times. Our analysis of key dark current contributors suggest that substantial further reduction in DCR to ~ 1/sec or less can be achieved by optimizing wavelength, operating voltage and temperature.


Photodetectors: Materials and Devices | 1996

MBE-grown HgCdTe heterojunction structures for IR FPAs

O. K. Wu; Rajesh D. Rajavel; Terence J. deLyon; J. E. Jensen; C. A. Cockrum; S. M. Johnson; G. M. Venzor; George R. Chapman; Jerry A. Wilson; E. A. Patten; W. A. Radford

HgCdTe MBE technology offers many advantages for the growth of multi-layer heterojunction structures for high performance IRFPAs. This paper reports data on major advances towards the fabrication of advanced detector structures, which have been made in MBE technology at Hughes Research Laboratories during the last couple of years. Currently device quality materials with desired structural and electrical characteristics are grown with the alloy compositions required for short-wavelength infrared (SWIR, 1 - 3 micron) to very long- wavelength infrared (VLWIR, 14 - 18 micron) detector applications. In-situ In (n-type) and As (p-type) doping developed at HRL have facilitated the growth of advanced multi-layer heterojunction devices. Thus, high performance IR focal plane arrays (128 X 128) with state-of-the-art performance have been fabricated with MBE-grown double-layer heterojunction structures for MWIR and LWIR detector applications. In addition, the growth of n-p-p-n multi-layer heterojunction structures has been developed and two-color detectors have been demonstrated. Recently, significant preliminary results on the heteroepitaxy growth of HgCdTe double-layer heterojunction structures on silicon have been achieved.


Optoelectronics '99 - Integrated Optoelectronic Devices | 1999

Epitaxial growth of HgCdTe 1.55-μm avalanche photodiodes by molecular beam epitaxy

Terence J. de Lyon; Bonnie A. Baumgratz; George R. Chapman; Eli E. Gordon; Andrew T. Hunter; Michael D. Jack; John E. Jensen; W. Johnson; Blaine D. Johs; K. Kosai; W. Larsen; G. L. Olson; M. Sen; Burt Walker

Separate absorption and multiplication avalanche photodiode (SAM-APD) device structures, operating in the 1.1 - 1.6 micrometer spectral range, have been fabricated in the HgCdTe material system by molecular-beam epitaxy. These HgCdTe device structures, which offer an alternative technology to existing III-V APD detectors, were grown on CdZnTe(211)B substrates using CdTe, Te, and Hg sources with in situ In and As doping. The alloy composition of the HgCdTe layers was adjusted to achieve both efficient absorption of IR radiation in the 1.1 - 1.6 micrometer spectral range and low excess-noise avalanche multiplication. To achieve resonant enhancement of hole impact ionization from the split-off valence band, the Hg1-xCdxTe alloy composition in the gain region of the device, x equals 0.73, was chosen to achieve equality between the bandgap energy and spin-orbit splitting. The appropriate value of this alloy composition was determined from analysis of the 300 K bandgap and spin-orbit splitting energies of a set of calibration layers, using a combination of IR transmission and spectroscopic ellipsometry measurements. MBE-grown APD epitaxial wafers were processed into passivated mesa-type discrete device structures and diode mini-arrays using conventional HgCdTe process technology. Device spectral response, dark current density, and avalanche gain measurements were performed on discrete diodes and diode mini- arrays on the processed wafers. Avalanche gains in the range of 30 - 40 at reverse bias of 85 - 90 V and array-median dark current density below 2 X 10-4 A/cm2 at 40 V reverse bias have been demonstrated.


Journal of Applied Physics | 2007

Frequency response of solid-state impact ionization multipliers

Joshua L. Beutler; Carleton S. Clauss; Michael S. Johnson; Aaron R. Hawkins; Mike D. Jack; George R. Chapman; Ken Kosai

A study of the frequency response of solid-state impact ionization multipliers (SIMs) is presented that emphasizes the role of resistive and capacitive elements of the device to establish response limitations. SIMs are designed to amplify input currents from an external source through the impact ionization mechanism. An equivalent circuit model for the SIM is developed based on its current versus voltage characteristics, which is used to derive a frequency response model. Theoretical frequency response matches very closely to measured responses for first generation SIM devices constructed on p-type silicon epitaxial layers with nickel silicide Schottky contact injection points. Devices were measured using a photodiode as a current source under light intensities between 74nA and 7.4μA. These SIMs were shown to have a low frequency response that follows a KT∕I relationship. Using an external photodiode with an effective capacitance of 6.8pF, frequency response for a 1.8μA input current was limited to 100kHz...


Infrared Technology and Applications XXIX | 2003

Development of Si:As impurity band conduction (IBC) detectors for mid-infrared applications

Ken J. Ando; Alan W. Hoffman; Peter J. Love; Andrew G. Toth; Conrad Anderson; George R. Chapman; Craig R. McCreight; Kimberly A. Ennico; Mark E. McKelvey; Robert E. McMurray

Si:As Impurity Band Conduction (IBC) detectors offer many significant advantages over other conventional photon detectors utilized for the infrared. SiAs offer excellent spectral response out to 28 μm with dark current in the 0.01e/second range at 7K over a wide bias range with no tunneling limitations. In addition, because of the perfect thermal match between the Si:As IBC detector and the readout IC (ROIC), hybrids formed by mating Si:As IBCs and ROICs are mechanically stable and have no hybrid reliability problems. Since Si:As IBC detectore are fabricated on readily available Si substrates, large formats are realizable. Si:As IBC detectors have been under development since the mid 80s at Raytheon Vision Systems (RVS). Under the NSAS SIRTF program, a 256 x 256 Si:As array was developed and successfully integrated into the SIRTF IRAC instrument. This same array is also utilized in the ASTRO-F IRC instrument. Both missions will be launched shortly and provide a significant improvement in our ability to measure the spectral signatures of solar type stars and galaxies at high redshifts under very low background conditions in space. Under the NASA Origins program, in collaboration with NASA Ames Research Center (ARC), RVS developed a high performance 1024 x 1024 Si:As IBC array. This array was tested at Ames Research Center. This paper will review the progress of Si:As IBC development at RVS, present test data from ARC, and discuss the more recent developments in Si:As IBC detectors for the JWST MIRI instrument and future missions such as SPICA, TPF, FIRST and DARWIN.

Collaboration


Dive into the George R. Chapman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge