Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George Z. Kyzas is active.

Publication


Featured researches published by George Z. Kyzas.


Journal of Hazardous Materials | 2014

Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors

Jie Fu; Changpo Zhao; Yupeng Luo; Chunsheng Liu; George Z. Kyzas; Yin Luo; Dongye Zhao; Shu-Qing An; Hailiang Zhu

This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community.


Journal of Colloid and Interface Science | 2009

Reactive and basic dyes removal by sorption onto chitosan derivatives

George Z. Kyzas; Nikolaos Lazaridis

In this study, the removal of a reactive (Remazol Yellow Gelb 3RS) and a basic (Basic Yellow 37) dye from aqueous solutions was investigated using cross-linked chitosan derivatives as sorbents (either powder or beads), which have been grafted with carboxyl and amide groups. The sorption behavior of the materials was examined through equilibrium, kinetic and pH-edges experiments. The reuse of sorbents was affirmed by sequential sorption-desorption cycles. Three isotherms (Langmuir, Freundlich, and Langmuir-Freundlich) were used to fit the equilibrium data, while the pseudo-second order equation for the kinetic data. Chitosan powder presented higher sorption capacity than beads. Chitosan grafted with amide groups was found superior sorbent for reactive dye at pH 2 (Q(max)=1211 mg/g), while chitosan grafted with carboxyl groups for basic dye at pH 10 (Q(max)=595 mg/g). For both cases the optimum contact time was 4 h using 1 g/L sorbent. The characterization of sorbents was achieved by scanning electron microscopy, particle size analysis and FTIR spectroscopy.


Marine Drugs | 2015

Recent Modifications of Chitosan for Adsorption Applications: A Critical and Systematic Review

George Z. Kyzas; Dimitrios N. Bikiaris

Chitosan is considered to be one of the most promising and applicable materials in adsorption applications. The existence of amino and hydroxyl groups in its molecules contributes to many possible adsorption interactions between chitosan and pollutants (dyes, metals, ions, phenols, pharmaceuticals/drugs, pesticides, herbicides, etc.). These functional groups can help in establishing positions for modification. Based on the learning from previously published works in literature, researchers have achieved a modification of chitosan with a number of different functional groups. This work summarizes the published works of the last three years (2012–2014) regarding the modification reactions of chitosans (grafting, cross-linking, etc.) and their application to adsorption of different environmental pollutants (in liquid-phase).


Materials | 2014

Green Adsorbents for Wastewaters: A Critical Review

George Z. Kyzas; Margaritis Kostoglou

One of the most serious environmental problems is the existence of hazardous and toxic pollutants in industrial wastewaters. The major hindrance is the simultaneous existence of many/different types of pollutants as (i) dyes; (ii) heavy metals; (iii) phenols; (iv) pesticides and (v) pharmaceuticals. Adsorption is considered to be one of the most promising techniques for wastewater treatment over the last decades. The economic crisis of the 2000s led researchers to turn their interest in adsorbent materials with lower cost. In this review article, a new term will be introduced, which is called “green adsorption”. Under this term, it is meant the low-cost materials originated from: (i) agricultural sources and by-products (fruits, vegetables, foods); (ii) agricultural residues and wastes; (iii) low-cost sources from which most complex adsorbents will be produced (i.e., activated carbons after pyrolysis of agricultural sources). These “green adsorbents” are expected to be inferior (regarding their adsorption capacity) to the super-adsorbents of previous literature (complex materials as modified chitosans, activated carbons, structurally-complex inorganic composite materials etc.), but their cost-potential makes them competitive. This review is a critical approach to green adsorption, discussing many different (maybe in some occasions doubtful) topics such as: (i) adsorption capacity; (ii) kinetic modeling (given the ultimate target to scale up the batch experimental data to fixed-bed column calculations for designing/optimizing commercial processes) and (iii) critical techno-economical data of green adsorption processes in order to scale-up experiments (from lab to industry) with economic analysis and perspectives of the use of green adsorbents.


Carbohydrate Polymers | 2013

Optimization of chitosan and β-cyclodextrin molecularly imprinted polymer synthesis for dye adsorption

George Z. Kyzas; Nikolaos Lazaridis; Dimitrios N. Bikiaris

In this study, two types of novel molecularly imprinted polymers (MIPs) were prepared, for toxic and carcinogenic dyes adsorption. Substrates of the polymeric matrix of the two MIPs were β-cyclodextrin and chitosan. The conditions in the polymerization/imprinting stage and in the rebinding/adsorption step were optimized. The effect of a range of parameters (polymer, cross-linker, and initiator concentrations, reaction time and pH) on the selectivity and adsorption capacity of the dye-MIPs were investigated. Their dye rebinding properties were demonstrated by equilibrium batch experiments (fitting with Freundlich model) and their kinetic rates were exported by the pseudo-first order model. Additionally, a thermodynamic evaluation was carried out through the determination of enthalpy, entropy, and free energy. The selectivity of MIPs was elucidated by their different rebinding capabilities in a trichromatic mixture (composed of related structurally dyes). Regeneration/reuse of the dye-loaded polymers was evaluated via sequential adsorption-desorption cycles.


Langmuir | 2014

Poly(itaconic acid)-grafted chitosan adsorbents with different cross-linking for Pb(II) and Cd(II) uptake.

George Z. Kyzas; Panoraia I. Siafaka; Dimitra A. Lambropoulou; Nikolaos Lazaridis; Dimitrios N. Bikiaris

Two novel chitosan (CS) adsorbents were prepared in powder form, after modification with the grafting of itaconic acid (CS-g-IA) and cross-linking with either glutaraldehyde (CS-g-IA(G)) or epichlorohydrin (CS-g-IA(E)). Their adsorption properties were evaluated in batch experiments for Cd(II) or Pb(II) uptake. Characterization techniques were applied to the prepared adsorbents as swelling experiments, TGA, SEM, XRD, and FTIR. Adsorption mechanisms were suggested for different pH conditions. Various adsorption parameters were determined as the effect of pH, contact time, and temperature. The maximum adsorption capacities for Cd(II) uptake were 405 and 331 mg/g for CS-g-IA(G) and CS-g-IA(E), respectively, revealing the capacity enhancement after grafting (124 and 92 mg/g were the respective values before grafting, respectively). A similar grafting effect was observed for Pb(II) uptake, proving its adsorption effectiveness on the CS backbone. The reuse of adsorbents was tested with 20 adsorption-desorption cycles.


Materials | 2013

The Change from Past to Future for Adsorbent Materials in Treatment of Dyeing Wastewaters

George Z. Kyzas; Jie Fu; K. A. Matis

Adsorption is one of the most promising decolorization techniques in dyeing wastewater treatment. Adsorption techniques for wastewater treatment have become more popular in recent years owing to their efficiency in the removal of pollutants too stable for biological methods. Dye adsorption is a result of two mechanisms (adsorption and ion exchange) and is influenced by many factors as dye/adsorbent interaction, adsorbent’s surface area, particle size, temperature, pH, and contact time. The main advantage of adsorption recently became the use of low-cost materials, which reduces the procedure cost. The present review firstly introduced the technology process, research history and research hotspot of adsorption. Then, the application of adsorption in treatment of dyeing wastewaters in the past decades was summarized, revealing the impressive changes in modes, trends, and conditions. From this review article, the different philosophy of synthesis of adsorbent materials became evident.


Molecules | 2013

Mercury(II) Removal with Modified Magnetic Chitosan Adsorbents

George Z. Kyzas; Eleni A. Deliyanni

Two modified chitosan derivatives were prepared in order to compare their adsorption properties for Hg(II) removal from aqueous solutions. The one chitosan adsorbent (CS) is only cross–linked with glutaraldehyde, while the other (CSm), which is magnetic, is cross-linked with glutaraldehyde and functionalized with magnetic nanoparticles (Fe3O4). Many possible interactions between materials and Hg(II) were observed after adsorption and explained via characterization with various techniques (SEM/EDAX, FTIR, XRD, DTG, DTA, VSM, swelling tests). The adsorption evaluation was done studying various parameters as the effect of pH (optimum value 5 for adsorption and 2 for desorption), contact time (fitting to pseudo–first, –second order and Elovich equations), temperature (isotherms at 25, 45, 65 °C), in line with a brief thermodynamic analysis (ΔG0 < 0, ΔH0 > 0, ΔS0 > 0). The maximum adsorption capacity (fitting with Langmuir and Freundlich model) of CS and CSm at 25 °C was 145 and 152 mg/g, respectively. The reuse ability of the adsorbents prepared was confirmed with sequential cycles of adsorption-desorption.


Colloids and Surfaces B: Biointerfaces | 2014

The role of chitosan as nanofiller of graphite oxide for the removal of toxic mercury ions

George Z. Kyzas; Nikolina A. Travlou; Eleni A. Deliyanni

The present study focuses on the role of chitosan (CS) as nanofiller of graphite oxide (GO) in order to prepare composite materials with improved Hg(II) adsorption properties. The removal of Hg(II) from aqueous solutions was studied using adsorbents as graphite oxide (GO), graphite oxide nanofilled with chitosan (GO/CS) and magnetic chitosan (GO/mCS). Many possible interactions between materials and Hg(II) were observed after adsorption and explained via characterization with various techniques (SEM/EDAX, FTIR, XRD, DTG). The adsorption evaluation was done studying various parameters as the effect of pH (both in adsorption and desorption), contact time (pseudo-second order fitting), temperature (isotherms at 25, 45, 65 °C), in line with a brief thermodynamic analysis (ΔG(0), ΔH(0), ΔS(0)). The maximum adsorption capacity (fitting with Langmuir model) of GO at 25 °C was Qmax=187 mg/g, while after the CS nanofilling (formation of the composite GO/CS), Qmax was increased to 381 mg/g with a further enhancement for GO/mCS (Qmax=397 mg/g).


Langmuir | 2010

Relating Interactions of Dye Molecules with Chitosan to Adsorption Kinetic Data

George Z. Kyzas; Margaritis Kostoglou; Nikolaos Lazaridis

The scope of the present work is the study of the adsorption behavior of two dyes of different nature/class on several chitosan derivatives. The adsorbents used were grafted with different functional groups (carboxyl, amido, sulfonate, N-vinylimidazole) to increase their adsorption capacity and cross-linked to improve their mechanical resistance. This complete kinetic analysis was realized at 25, 45, and 65 degrees C to observe the effect of temperature on adsorption rates for each adsorbent-adsorbate system. Activated carbon was also used as an adsorbent for reference/comparison. The experimental equilibrium data were successfully fitted to the Langmuir-Freundlich (L-F) isotherms, presenting high correlation coefficients (R(2) approximately 0.998). A detailed pore-surface diffusion with local adsorption-desorption model has been developed to describe the adsorption kinetics in chitosan adsorbents. The existence of kinetic data in several temperatures assists in recognizing the diffusion mechanism in the adsorbent particles. The findings on diffusion mechanisms and the corresponding coefficients, from using the model to match the experimental data, are compatible with the expected adsorbent-dye interactions based on their chemical structure.

Collaboration


Dive into the George Z. Kyzas's collaboration.

Top Co-Authors

Avatar

Dimitrios N. Bikiaris

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Nikolaos Lazaridis

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Eleni A. Deliyanni

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

K. A. Matis

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Margaritis Kostoglou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Jie Fu

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ioannis Anastopoulos

Agricultural University of Athens

View shared research outputs
Top Co-Authors

Avatar

Dimitra A. Lambropoulou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Panoraia I. Siafaka

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Nikolina A. Travlou

Aristotle University of Thessaloniki

View shared research outputs
Researchain Logo
Decentralizing Knowledge