Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georgia Konstantinidou is active.

Publication


Featured researches published by Georgia Konstantinidou.


Cancer Research | 2009

Dual phosphoinositide 3-kinase/mammalian target of rapamycin blockade is an effective radiosensitizing strategy for the treatment of non-small cell lung cancer harboring K-RAS mutations.

Georgia Konstantinidou; Erik A. Bey; Andrea Rabellino; Katja Schuster; Michael S. Maira; Adi F. Gazdar; Augusto Amici; David A. Boothman; Pier Paolo Scaglioni

Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related death worldwide. NSCLC often harbors oncogenic K-RAS mutations that lead to the aberrant activation of several intracellular networks including the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway. Oncogenic K-RAS predicts poor prognosis and resistance to treatment with ionizing radiation (IR). Oncogenic K-Ras expression in the respiratory epithelium is sufficient to initiate NSCLC tumorigenesis, which requires the catalytic subunit of PI3K. Thus, effective inhibition of the PI3K signaling should lead to significant antitumor effects. However, therapy with rapamycin analogues has yielded disappointing results due in part to compensatory up-regulation of AKT. We hypothesized that dual PI3K/mTOR blockade would overcome these limitations. We tested this hypothesis with BEZ235, a novel dual PI3K/mTOR inhibitor that has recently entered clinical development. We found that BEZ235 induces a striking antiproliferative effect both in transgenic mice with oncogenic K-RAS-induced NSCLC and in NSCLC cell lines expressing oncogenic K-RAS. We determined that treatment with BEZ235 was not sufficient to induce apoptosis. However, we found that dual PI3K/mTOR blockade effectively sensitizes NSCLC expressing oncogenic K-RAS to the proapoptotic effects of IR both in vitro and in vivo. We conclude that dual PI3K/mTOR blockade in combination with IR may benefit patients with NSCLC expressing oncogenic K-RAS. These findings may have general applicability in cancer therapy, because aberrant activation of PI3K occurs frequently in human cancer.


Oncogene | 2008

Mesenchymal stem cells share molecular signature with mesenchymal tumor cells and favor early tumor growth in syngeneic mice

Mirco Galiè; Georgia Konstantinidou; D Peroni; I Scambi; Cristina Marchini; V Lisi; M Krampera; P Magnani; Flavia Merigo; Maura Montani; F Boschi; P Marzola; R Orrù; P Farace; Andrea Sbarbati; Augusto Amici

Tumor microenvironment in carcinomas recruits mesenchymal cells with an abnormal proangiogenic and invasive phenotype. It is not clear whether mesenchymal tumor cells (MTCs) derive from the activation of mature fibroblasts or from their stem cell precursors. However, stromal cell activation in tumors resembles in several aspects the mesenchymal rearrangement which normally occurs during reparative processes such as wound healing. Mesenchymal stem cells (MSCs) play a crucial role in developmental and reparative processes and have extraordinary proangiogenic potential, on the basis of which they are thought to show great promise for the treatment of ischemic disorders. Here, we show that MTCs have proangiogenic potential and that they share the transcriptional expression of the best-known proangiogenic factors with MSCs. We also found that MTCs and MSCs have the same molecular signature for stemness-related genes, and that when co-implanted with cancer cells in syngeneic animals MSCs determine early tumor appearance, probably by favoring the angiogenic switch. Our data (1) reveal crucial aspects of the proangiogenic phenotype of MTCs, (2) strongly suggest their stem origin and (3) signal the risk of therapeutic use of MSCs in tumor-promoting conditions.


Cancer Research | 2012

The SUMO E3-ligase PIAS1 regulates the tumor suppressor PML and its oncogenic counterpart PML-RARA

Andrea Rabellino; Brandon Carter; Georgia Konstantinidou; Shwu Yuan Wu; Alessandro Rimessi; Lauren Averett Byers; John V. Heymach; Luc Girard; Cheng Ming Chiang; Julie Teruya-Feldstein; Pier Paolo Scaglioni

The ubiquitin-like SUMO proteins covalently modify protein substrates and regulate their functional properties. In a broad spectrum of cancers, the tumor suppressor PML undergoes ubiquitin-mediated degradation primed by CK2 phosphorylation. Here, we report that the SUMO E3-ligase inhibitor PIAS1 regulates oncogenic signaling through its ability to sumoylate PML and the PML-RARA oncoprotein of acute promyelocytic leukemia (APL). PIAS1-mediated SUMOylation of PML promoted CK2 interaction and ubiquitin/proteasome-mediated degradation of PML, attenuating its tumor suppressor functions. In addition, PIAS1-mediated SUMOylation of PML-RARA was essential for induction of its degradation by arsenic trioxide, an effective APL treatment. Moreover, PIAS1 suppression abrogated the ability of arsenic trioxide to trigger apoptosis in APL cells. Lastly, PIAS1 was also essential for PML degradation in non-small cell lung carcinoma (NSCLC) cells, and PML and PIAS1 were inversely correlated in NSCLC cell lines and primary specimens. Together, our findings reveal novel roles for PIAS1 and the SUMOylation machinery in regulating oncogenic networks and the response to leukemia therapy.


Molecular Cell | 2015

Molecular Basis of the Rapamycin Insensitivity of Target Of Rapamycin Complex 2.

Christl Gaubitz; Taiana M Oliveira; Manoel Prouteau; Alexander Leitner; Manikandan Karuppasamy; Georgia Konstantinidou; Delphine Rispal; Sandra Eltschinger; Graham Robinson; Stéphane Thore; Ruedi Aebersold; Christiane Schaffitzel; Robbie Loewith

Target of Rapamycin (TOR) plays central roles in the regulation of eukaryote growth as the hub of two essential multiprotein complexes: TORC1, which is rapamycin-sensitive, and the lesser characterized TORC2, which is not. TORC2 is a key regulator of lipid biosynthesis and Akt-mediated survival signaling. In spite of its importance, its structure and the molecular basis of its rapamycin insensitivity are unknown. Using crosslinking-mass spectrometry and electron microscopy, we determined the architecture of TORC2. TORC2 displays a rhomboid shape with pseudo-2-fold symmetry and a prominent central cavity. Our data indicate that the C-terminal part of Avo3, a subunit unique to TORC2, is close to the FKBP12-rapamycin-binding domain of Tor2. Removal of this sequence generated a FKBP12-rapamycin-sensitive TORC2 variant, which provides a powerful tool for deciphering TORC2 function in vivo. Using this variant, we demonstrate a role for TORC2 in G2/M cell-cycle progression.


Cancer Discovery | 2013

RHOA-FAK Is a Required Signaling Axis for the Maintenance of KRAS-Driven Lung Adenocarcinomas

Georgia Konstantinidou; Giorgio Ramadori; Francesca Torti; Kim Kangasniemi; Rachel E. Ramirez; Yiran Cai; Carmen Behrens; Michael T. Dellinger; Rolf A. Brekken; Ignacio I. Wistuba; Adriana Heguy; Julie Teruya-Feldstein; Pier Paolo Scaglioni

UNLABELLED Non-small cell lung cancer (NSCLC) often expresses mutant KRAS together with tumor-associated mutations of the CDKN2A locus, which are associated with aggressive, therapy-resistant tumors. Here, we unravel specific requirements for the maintenance of NSCLC that carries this genotype. We establish that the extracellular signal-regulated kinase (ERK)/RHOA/focal adhesion kinase (FAK) network is deregulated in high-grade lung tumors. Suppression of RHOA or FAK induces cell death selectively in mutant KRAS;INK4A/ARF-deficient lung cancer cells. Furthermore, pharmacologic inhibition of FAK caused tumor regression specifically in the high-grade lung cancer that developed in mutant Kras;Cdkn2a-null mice. These findings provide a rationale for the rapid implementation of genotype-specific targeted therapies using FAK inhibitors in patients with cancer. SIGNIFICANCE Targeted therapies are effective for only a small fraction of patients with cancer. We report that FAK inhibitors exert potent antitumor effects in NSCLCs that express mutant KRAS in association with INK4A/ARF deficiency. These results reveal a novel genotype-specific vulnerability of cancer cells that can be exploited for therapeutic purposes.


Molecular and Cellular Biochemistry | 2008

CK2 mediates phosphorylation and ubiquitin-mediated degradation of the PML tumor suppressor

Pier Paolo Scaglioni; Thomas M. Yung; S. Choi; C. Baldini; Georgia Konstantinidou; Pier Paolo Pandolfi

The PML tumor suppressor controls growth suppression, induction of apoptosis, and cellular senescence. PML loss occurs frequently in hematopoietic and solid tumors. PML loss often correlates with tumor progression. Casein kinase 2 (CK2) is a stress-activated serine/threonine protein kinase that is oncogenic and frequently overexpressed in human tumor of multiple histological origins. In addition, CK2 overexpression due to gene amplification has been reported to be an adverse prognostic factor in non-small cell lung cancer. At the 5th International Conference on Protein Kinase CK2 in Padova, Italy, we reviewed our recent findings that PML undergoes ubiquitin/proteasome-mediated degradation in immortalized and tumor derived cell lines. PML degradation depends on direct CK2 phosphorylation of PML Ser517. PML mutants that are resistant to CK2 phosphorylation display increased tumor suppressive functions in assays measuring apoptosis, replicative senescence, and in xenograft models. More significantly, CK2 pharmacological inhibition enhances PML tumor suppressive property. These data identify a key post-translational mechanism that controls PML protein levels in cancer cells and suggest that CK2 inhibitors may be beneficial anti-cancer drugs.


PLOS ONE | 2010

Mesenchymal/stromal gene expression signature relates to basal-like breast cancers, identifies bone metastasis and predicts resistance to therapies.

Cristina Marchini; Maura Montani; Georgia Konstantinidou; Rita Orrù; Silvia Mannucci; Giorgio Ramadori; Federico Gabrielli; Anna Baruzzi; Giorgio Berton; Flavia Merigo; Stefania Fin; Manuela Iezzi; Brigitte Bisaro; Andrea Sbarbati; Massimo Zerani; Mirco Galiè; Augusto Amici

Background Mounting clinical and experimental evidence suggests that the shift of carcinomas towards a mesenchymal phenotype is a common paradigm for both resistance to therapy and tumor recurrence. However, the mesenchymalization of carcinomas has not yet entered clinical practice as a crucial diagnostic paradigm. Methodology/Principal Findings By integrating in silico and in vitro studies with our epithelial and mesenchymal tumor models, we compare herein crucial molecular pathways of previously described carcinoma-derived mesenchymal tumor cells (A17) with that of both carcinomas and other mesenchymal phenotypes, such as mesenchymal stem cells (MSCs), breast stroma, and various types of sarcomas. We identified three mesenchymal/stromal-signatures which A17 cells shares with MSCs and breast stroma. By using a recently developed computational approach with publicly available microarray data, we show that these signatures: 1) significantly relates to basal-like breast cancer subtypes; 2) significantly relates to bone metastasis; 3) are up-regulated after hormonal treatment; 4) predict resistance to neoadjuvant therapies. Conclusions/Significance Our results demonstrate that mesenchymalization is an intrinsic property of the most aggressive tumors and it relates to therapy resistance as well as bone metastasis.


Embo Molecular Medicine | 2012

Translation‐dependent mechanisms lead to PML upregulation and mediate oncogenic K‐RAS‐induced cellular senescence

Pier Paolo Scaglioni; Andrea Rabellino; Thomas M. Yung; Rosa Bernardi; Sooyeon Choi; Georgia Konstantinidou; Caterina Nardella; Ke Cheng; Pier Paolo Pandolfi

Expression of oncogenic K‐RAS in primary cells elicits oncogene‐induced cellular senescence (OIS), a form of growth arrest that potently opposes tumourigenesis. This effect has been largely attributed to transcriptional mechanisms that depend on the p53 tumour suppressor protein. The PML tumour suppressor was initially identified as a component of the PML‐RARα oncoprotein of acute promyelocytic leukaemia (APL). PML, a critical OIS mediator, is upregulated by oncogenic K‐RAS in vivo and in vitro. We demonstrate here that oncogenic K‐RAS induces PML protein upregulation by activating the RAS/MEK1/mTOR/eIF4E pathway even in the absence of p53. Under these circumstances, PML mRNA is selectively associated to polysomes. Importantly, we find that the PML 5′ untranslated mRNA region plays a key role in mediating PML protein upregulation and that its presence is essential for an efficient OIS response. These findings demonstrate that upregulation of PML translation plays a central role in oncogenic K‐RAS‐induced OIS. Thus, selective translation initiation plays a critical role in tumour suppression with important therapeutic implications for the treatment of solid tumours and APL.


Breast Cancer Research | 2012

p130Cas/Cyclooxygenase-2 axis in the control of mesenchymal plasticity of breast cancer cells

Brigitte Bisaro; Maura Montani; Georgia Konstantinidou; Cristina Marchini; Lucia Pietrella; Manuela Iezzi; Mirco Galiè; Francesca Orso; Annalisa Camporeale; Shana Colombo; Paola Di Stefano; Giusy Tornillo; Maria del Pilar Camacho-Leal; Emilia Turco; Daniela Taverna; Sara Cabodi; Augusto Amici; Paola Defilippi

IntroductionIntrinsic plasticity of breast carcinoma cells allows them to undergo a transient and reversible conversion into mesenchymal cells to disseminate into distant organs, where they can re-differentiate to an epithelial-like status to form a cohesive secondary mass. The p130Cas scaffold protein is overexpressed in human ER+ and HER2+ breast cancer where it contributes to cancer progression, invasion and resistance to therapy. However, its role in regulating mesenchymal aggressive breast cancer cells remains to be determined. The aim of this study was to investigate the molecular and functional involvement of this adaptor protein in breast cancer cell plasticity.MethodsWe used silencing strategies and rescue experiments to evaluate phenotypic and biochemical changes from mesenchymal to epithelial traits in breast tumor cell lines. In the mouse A17 cell model previously related to mesenchymal cancer stem cells and basal-like breast cancer, we biochemically dissected the signaling pathways involved and performed functional in vivo tumor growth ability assays. The significance of the signaling platform was assessed in a human setting through the use of specific inhibitors in aggressive MDA-MB-231 subpopulation LM2-4175 cells. To evaluate the clinical relevance of the results, we analyzed publicly available microarray data from the Netherlands Cancer Institute and from the Koo Foundation Sun Yat-Sen Cancer Center.ResultsWe show that p130Cas silencing induces loss of mesenchymal features, by downregulating Vimentin, Snail, Slug and Twist transcriptional factors, resulting in the acquirement of epithelial-like traits. Mechanistically, p130Cas controls Cyclooxygenase-2 transcriptional expression, which in turn contributes to p130Cas-dependent maintenance of mesenchymal phenotype. This cascade of events also compromises in vivo tumor growth through inhibition of cell signaling controlling cell cycle progression. c-Src and JNK kinases are sequential players in p130Cas/ Cyclooxygenase-2 axis and their pharmacological inhibition is sufficient to downregulate Cyclooxygenase-2 leading to an epithelial phenotype. Finally, in silico microarray data analysis indicates that p130Cas and Cyclooxygenase-2 concomitant overexpression predicts poor survival and high probability of breast tumor recurrence.ConclusionsOverall, these data identify a new p130Cas/Cyclooxygenase-2 axis as a crucial element in the control of breast tumor plasticity, opening new therapeutic strategies leading to inhibition of these pathways in aggressive breast carcinoma.


Cell Metabolism | 2015

Diet-Induced Unresolved ER Stress Hinders KRAS-Driven Lung Tumorigenesis

Giorgio Ramadori; Georgia Konstantinidou; Niranjan Venkateswaran; Tommasina Biscotti; Lorraine K. Morlock; Mirco Galiè; Noelle S. Williams; Michele Maria Luchetti; Alfredo Santinelli; Pier Paolo Scaglioni; Roberto Coppari

Summary Dietary effects on tumor biology can be exploited to unravel cancer vulnerabilities. Here, we present surprising evidence for anti-proliferative action of high-calorie-diet (HCD) feeding on KRAS-driven lung tumors. Tumors of mice that commenced HCD feeding before tumor onset displayed defective unfolded protein response (UPR) and unresolved endoplasmic reticulum (ER) stress. Unresolved ER stress and reduced proliferation are reversed by chemical chaperone treatment. Whole-genome transcriptional analyses revealed FKBP10 as one of the most downregulated chaperones in tumors of the HCD-pre-tumor-onset group. FKBP10 downregulation dampens tumor growth in vitro and in vivo. Providing translational value to these results, we report that FKBP10 is expressed in human KRAS-positive and -negative lung cancers, but not in healthy parenchyma. Collectively, our data shed light on an unexpected anti-tumor action of HCD imposed before tumor onset and identify FKBP10 as a putative therapeutic target to selectively hinder lung cancer.

Collaboration


Dive into the Georgia Konstantinidou's collaboration.

Top Co-Authors

Avatar

Pier Paolo Scaglioni

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Rabellino

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Giorgio Ramadori

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerry W. Shay

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

John D. Minna

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kimberly Batten

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Niranjan Venkateswaran

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Pier Paolo Pandolfi

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge