Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerald J. Brady is active.

Publication


Featured researches published by Gerald J. Brady.


ACS Nano | 2014

Polyfluorene-Sorted, Carbon Nanotube Array Field-Effect Transistors with Increased Current Density and High On/Off Ratio

Gerald J. Brady; Yongho Joo; Meng-Yin Wu; Matthew J. Shea; Padma Gopalan; Michael S. Arnold

Challenges in eliminating metallic from semiconducting single-walled carbon nanotubes (SWCNTs) and in controlling their alignment have limited the development of high-performance SWCNT-based field-effect transistors (FETs). We recently pioneered an approach for depositing aligned arrays of ultra-high-purity semiconducting SWCNTs, isolated using polyfluorene derivatives, called dose-controlled floating evaporative self-assembly. Here, we tailor FETs fabricated from these arrays to achieve on-conductance (G(on)) per width and an on-off ratio (G(on)/G(off)) of 261 μS/μm and 2 × 10(5), respectively, for a channel length (L(ch)) of 240 nm and 116 μS/μm and 1 × 10(6), respectively, for an L(ch) of 1 μm. We demonstrate 1400× greater G(on)/G(off) than SWCNT FETs fabricated by other methods, at comparable G(on) per width of ∼250 μS/μm and 30-100× greater G(on) per width at comparable G(on)/G(off) of 10(5)-10(7). The average G(on) per tube reaches 5.7 ± 1.4 μS at a packing density of 35 tubes/μm for L(ch) in the range 160-240 nm, limited by contact resistance. These gains highlight the promise of using ultra-high-purity semiconducting SWCNTs with controlled alignment for next-generation semiconductor electronics.


Nature Communications | 2015

Direct oriented growth of armchair graphene nanoribbons on germanium

Robert M. Jacobberger; Brian Kiraly; Matthieu Fortin-Deschênes; Pierre L. Levesque; Kyle M. McElhinny; Gerald J. Brady; Richard Rojas Delgado; Susmit Singha Roy; Andrew J. Mannix; Max G. Lagally; Paul G. Evans; P. Desjardins; Richard Martel; Mark C. Hersam; Nathan P. Guisinger; Michael S. Arnold

Graphene can be transformed from a semimetal into a semiconductor if it is confined into nanoribbons narrower than 10 nm with controlled crystallographic orientation and well-defined armchair edges. However, the scalable synthesis of nanoribbons with this precision directly on insulating or semiconducting substrates has not been possible. Here we demonstrate the synthesis of graphene nanoribbons on Ge(001) via chemical vapour deposition. The nanoribbons are self-aligning 3° from the Ge〈110〉 directions, are self-defining with predominantly smooth armchair edges, and have tunable width to <10 nm and aspect ratio to >70. In order to realize highly anisotropic ribbons, it is critical to operate in a regime in which the growth rate in the width direction is especially slow, <5 nm h−1. This directional and anisotropic growth enables nanoribbon fabrication directly on conventional semiconductor wafer platforms and, therefore, promises to allow the integration of nanoribbons into future hybrid integrated circuits.


Applied Physics Letters | 2014

High performance transistors via aligned polyfluorene-sorted carbon nanotubes

Gerald J. Brady; Yongho Joo; Susmit Singha Roy; Padma Gopalan; Michael S. Arnold

We evaluate the performance of exceptionally electronic-type sorted, semiconducting, aligned single-walled carbon nanotubes (s-SWCNTs) in field effect transistors (FETs). High on-conductance and high on/off conductance modulation are simultaneously achieved at channel lengths which are both shorter and longer than individual s-SWCNTs. The s-SWCNTs are isolated from heterogeneous mixtures using a polyfluorene-derivative as a selective agent and aligned on substrates via dose-controlled, floating evaporative self-assembly at densities of ∼50 s-SWCNTs μm−1. At a channel length of 9 μm the s-SWCNTs percolate to span the FET channel, and the on/off ratio and charge transport mobility are 2.2 × 107 and 46 cm2 V−1 s−1, respectively. At a channel length of 400 nm, a large fraction of the s-SWCNTs directly span the channel, and the on-conductance per width is 61 μS μm−1 and the on/off ratio is 4 × 105. These results are considerably better than previous solution-processed FETs, which have suffered from poor on/off...


ACS Nano | 2015

Isolation of Pristine Electronics Grade Semiconducting Carbon Nanotubes by Switching the Rigidity of the Wrapping Polymer Backbone on Demand

Yongho Joo; Gerald J. Brady; Matthew J. Shea; M. Belén Oviedo; Catherine Kanimozhi; Samantha K. Schmitt; Bryan M. Wong; Michael S. Arnold; Padma Gopalan

Conjugated polymers are among the most selective carbon nanotube sorting agents discovered and enable the isolation of ultrahigh purity semiconducting singled-walled carbon nanotubes (s-SWCNTs) from heterogeneous mixtures that contain problematic metallic nanotubes. The strong selectivity though highly desirable for sorting, also leads to irreversible adsorption of the polymer on the s-SWCNTs, limiting their electronic and optoelectronic properties. We demonstrate how changes in polymer backbone rigidity can trigger its release from the nanotube surface. To do so, we choose a model polymer, namely poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,60-(2,20-bipyridine))] (PFO-BPy), which provides ultrahigh selectivity for s-SWCNTs, which are useful specifically for FETs, and has the chemical functionality (BPy) to alter the rigidity using mild chemistry. Upon addition of Re(CO)5Cl to the solution of PFO-BPy wrapped s-SWCNTs, selective chelation with the BPy unit in the copolymer leads to the unwrapping of PFO-BPy. UV-vis, XPS, and Raman spectroscopy studies show that binding of the metal ligand complex to BPy triggers up to 85% removal of the PFO-BPy from arc-discharge s-SWCNTs (diameter = 1.3-1.7 nm) and up to 72% from CoMoCAT s-SWCNTs (diameter = 0.7-0.8 nm). Importantly, Raman studies show that the electronic structure of the s-SWCNTs is preserved through this process. The generalizability of this method is demonstrated with two other transition metal salts. Molecular dynamics simulations support our experimental findings that the complexation of BPy with Re(CO)5Cl in the PFO-BPy backbone induces a dramatic conformational change that leads to a dynamic unwrapping of the polymer off the nanotube yielding pristine s-SWCNTs.


ACS Nano | 2016

Radio Frequency Transistors Using Aligned Semiconducting Carbon Nanotubes with Current-Gain Cutoff Frequency and Maximum Oscillation Frequency Simultaneously Greater than 70 GHz

Yu Cao; Gerald J. Brady; Hui Gui; Chris Rutherglen; Michael S. Arnold; Chongwu Zhou

In this paper, we report record radio frequency (RF) performance of carbon nanotube transistors based on combined use of a self-aligned T-shape gate structure, and well-aligned, high-semiconducting-purity, high-density polyfluorene-sorted semiconducting carbon nanotubes, which were deposited using dose-controlled, floating evaporative self-assembly method. These transistors show outstanding direct current (DC) performance with on-current density of 350 μA/μm, transconductance as high as 310 μS/μm, and superior current saturation with normalized output resistance greater than 100 kΩ·μm. These transistors create a record as carbon nanotube RF transistors that demonstrate both the current-gain cutoff frequency (ft) and the maximum oscillation frequency (fmax) greater than 70 GHz. Furthermore, these transistors exhibit good linearity performance with 1 dB gain compression point (P1dB) of 14 dBm and input third-order intercept point (IIP3) of 22 dBm. Our study advances state-of-the-art of carbon nanotube RF electronics, which have the potential to be made flexible and may find broad applications for signal amplification, wireless communication, and wearable/flexible electronics.


Langmuir | 2017

Nanotube Alignment Mechanism in Floating Evaporative Self-Assembly

Katherine Rose Jinkins; Jason Chan; Gerald J. Brady; Kjerstin K Gronski; Padma Gopalan; Harold T. Evensen; Arganthaël Berson; Michael S. Arnold

The challenge of assembling semiconducting single-wall carbon nanotubes (s-SWCNTs) into densely packed, aligned arrays has limited the scalability and practicality of high-performance nanotube-based electronics technologies. The aligned deposition of s-SWCNTs via floating evaporative self-assembly (FESA) has promise for overcoming this challenge; however, the mechanisms behind FESA need to be elucidated before the technique can be improved and scaled. Here, we gain a deeper understanding of the FESA process by studying a stationary analogue of FESA and optically tracking the dynamics of the organic ink/water/substrate and ink/air/substrate interfaces during the typical FESA process. We observe that the ink/water interface serves to collect and confine the s-SWCNTs before alignment and that the deposition of aligned bands of s-SWCNTs occurs at the ink/water/substrate contact line during the depinning of both the ink/air/substrate and ink/water/substrate contact lines. We also demonstrate improved control over the interband spacing, bandwidth, and packing density of FESA-aligned s-SWCNT arrays. The substrate lift rate (5-15 mm min-1) is used to tailor the interband spacing from 90 to 280 μm while maintaining a constant aligned s-SWCNT bandwidth of 50 μm. Varying the s-SWCNT ink concentration (0.75-10 μg mL-1) allows the control of the bandwidth from 2.5 to 45 μm. A steep increase in packing density is observed from 11 s-SWCNTs μm-1 at 0.75 μg mL-1 to 20 s-SWCNTs μm-1 at 2 μg mL-1, with a saturated packing density of ∼24 s-SWCNTs μm-1. We also demonstrate the scaling of FESA to align s-SWCNTs on a 2.5 × 2.5 cm2 scale while preserving high-quality alignment on the nanometer scale. These findings help realize the scalable fabrication of well-aligned s-SWCNT arrays to serve as large-area platforms for next-generation semiconductor electronics.


Journal of Applied Physics | 2017

Channel length scaling behavior in transistors based on individual versus dense arrays of carbon nanotubes

Gerald J. Brady; Katherine Rose Jinkins; Michael S. Arnold

Recent advances in the solution-phase sorting and assembly of semiconducting single-walled carbon nanotubes (SWCNTs) have enabled significant gains in the performance of field-effect transistors (FETs) constructed from dense arrays of aligned SWCNTs. However, the channel length (LCH) downscaling behaviors of these arrays, which contain some organizational disorder (i.e., rotational misalignment and non-uniform pitch), have not yet been studied in detail below LCH of 100 nm. This study compares the behaviors of individualized SWCNTs with arrays of aligned, solution-cast SWCNTs in FETs with LCH ranging from 30 to 240 nm. The on-state conductance of both individual and array SWCNTs rises with decreasing LCH. Nearly ballistic transport is observed for LCH < 40 nm in both cases, reaching a conductance of 0.82 Go per SWCNT in arrays, where Go = 2e2/h is the quantum conductance. In the off-state, the off-current and subthreshold swing of the individual SWCNTs remain nearly invariant with decreasing LCH whereas a...


Science Advances | 2016

Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs.

Gerald J. Brady; Austin J. Way; Nathaniel S. Safron; Harold T. Evensen; Padma Gopalan; Michael S. Arnold


Langmuir | 2014

Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents.

Yongho Joo; Gerald J. Brady; Michael S. Arnold; Padma Gopalan


ACS Applied Materials & Interfaces | 2017

Polymer-Free Electronic-Grade Aligned Semiconducting Carbon Nanotube Array

Yongho Joo; Gerald J. Brady; Catherine Kanimozhi; Jaehyoung Ko; Matthew J. Shea; Michael T. Strand; Michael S. Arnold; Padma Gopalan

Collaboration


Dive into the Gerald J. Brady's collaboration.

Top Co-Authors

Avatar

Michael S. Arnold

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Padma Gopalan

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Yongho Joo

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Matthew J. Shea

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Catherine Kanimozhi

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Harold T. Evensen

Wisconsin Alumni Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Katherine Rose Jinkins

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Austin J. Way

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Meng-Yin Wu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Susmit Singha Roy

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge