Yongho Joo
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yongho Joo.
ACS Nano | 2014
Gerald J. Brady; Yongho Joo; Meng-Yin Wu; Matthew J. Shea; Padma Gopalan; Michael S. Arnold
Challenges in eliminating metallic from semiconducting single-walled carbon nanotubes (SWCNTs) and in controlling their alignment have limited the development of high-performance SWCNT-based field-effect transistors (FETs). We recently pioneered an approach for depositing aligned arrays of ultra-high-purity semiconducting SWCNTs, isolated using polyfluorene derivatives, called dose-controlled floating evaporative self-assembly. Here, we tailor FETs fabricated from these arrays to achieve on-conductance (G(on)) per width and an on-off ratio (G(on)/G(off)) of 261 μS/μm and 2 × 10(5), respectively, for a channel length (L(ch)) of 240 nm and 116 μS/μm and 1 × 10(6), respectively, for an L(ch) of 1 μm. We demonstrate 1400× greater G(on)/G(off) than SWCNT FETs fabricated by other methods, at comparable G(on) per width of ∼250 μS/μm and 30-100× greater G(on) per width at comparable G(on)/G(off) of 10(5)-10(7). The average G(on) per tube reaches 5.7 ± 1.4 μS at a packing density of 35 tubes/μm for L(ch) in the range 160-240 nm, limited by contact resistance. These gains highlight the promise of using ultra-high-purity semiconducting SWCNTs with controlled alignment for next-generation semiconductor electronics.
Applied Physics Letters | 2014
Gerald J. Brady; Yongho Joo; Susmit Singha Roy; Padma Gopalan; Michael S. Arnold
We evaluate the performance of exceptionally electronic-type sorted, semiconducting, aligned single-walled carbon nanotubes (s-SWCNTs) in field effect transistors (FETs). High on-conductance and high on/off conductance modulation are simultaneously achieved at channel lengths which are both shorter and longer than individual s-SWCNTs. The s-SWCNTs are isolated from heterogeneous mixtures using a polyfluorene-derivative as a selective agent and aligned on substrates via dose-controlled, floating evaporative self-assembly at densities of ∼50 s-SWCNTs μm−1. At a channel length of 9 μm the s-SWCNTs percolate to span the FET channel, and the on/off ratio and charge transport mobility are 2.2 × 107 and 46 cm2 V−1 s−1, respectively. At a channel length of 400 nm, a large fraction of the s-SWCNTs directly span the channel, and the on-conductance per width is 61 μS μm−1 and the on/off ratio is 4 × 105. These results are considerably better than previous solution-processed FETs, which have suffered from poor on/off...
Journal of the American Chemical Society | 2014
Jennifer E. Laaser; David R. Skoff; Jia-Jung Ho; Yongho Joo; Arnaldo L. Serrano; Jay D. Steinkruger; Padma Gopalan; Samuel H. Gellman; Martin T. Zanni
Surface-bound polypeptides and proteins are increasingly used to functionalize inorganic interfaces such as electrodes, but their structural characterization is exceedingly difficult with standard technologies. In this paper, we report the first two-dimensional sum-frequency generation (2D SFG) spectra of a peptide monolayer, which are collected by adding a mid-IR pulse shaper to a standard femtosecond SFG spectrometer. On a gold surface, standard FTIR spectroscopy is inconclusive about the peptide structure because of solvation-induced frequency shifts, but the 2D line shapes, anharmonic shifts, and lifetimes obtained from 2D SFG reveal that the peptide is largely α-helical and upright. Random coil residues are also observed, which do not themselves appear in SFG spectra due to their isotropic structural distribution, but which still absorb infrared light and so can be detected by cross-peaks in 2D SFG spectra. We discuss these results in the context of peptide design. Because of the similar way in which the spectra are collected, these 2D SFG spectra can be directly compared to 2D IR spectra, thereby enabling structural interpretations of surface-bound peptides and biomolecules based on the well-studied structure/2D IR spectra relationships established from soluble proteins.
ACS Nano | 2015
Yongho Joo; Gerald J. Brady; Matthew J. Shea; M. Belén Oviedo; Catherine Kanimozhi; Samantha K. Schmitt; Bryan M. Wong; Michael S. Arnold; Padma Gopalan
Conjugated polymers are among the most selective carbon nanotube sorting agents discovered and enable the isolation of ultrahigh purity semiconducting singled-walled carbon nanotubes (s-SWCNTs) from heterogeneous mixtures that contain problematic metallic nanotubes. The strong selectivity though highly desirable for sorting, also leads to irreversible adsorption of the polymer on the s-SWCNTs, limiting their electronic and optoelectronic properties. We demonstrate how changes in polymer backbone rigidity can trigger its release from the nanotube surface. To do so, we choose a model polymer, namely poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,60-(2,20-bipyridine))] (PFO-BPy), which provides ultrahigh selectivity for s-SWCNTs, which are useful specifically for FETs, and has the chemical functionality (BPy) to alter the rigidity using mild chemistry. Upon addition of Re(CO)5Cl to the solution of PFO-BPy wrapped s-SWCNTs, selective chelation with the BPy unit in the copolymer leads to the unwrapping of PFO-BPy. UV-vis, XPS, and Raman spectroscopy studies show that binding of the metal ligand complex to BPy triggers up to 85% removal of the PFO-BPy from arc-discharge s-SWCNTs (diameter = 1.3-1.7 nm) and up to 72% from CoMoCAT s-SWCNTs (diameter = 0.7-0.8 nm). Importantly, Raman studies show that the electronic structure of the s-SWCNTs is preserved through this process. The generalizability of this method is demonstrated with two other transition metal salts. Molecular dynamics simulations support our experimental findings that the complexation of BPy with Re(CO)5Cl in the PFO-BPy backbone induces a dramatic conformational change that leads to a dynamic unwrapping of the polymer off the nanotube yielding pristine s-SWCNTs.
Journal of Chemical Physics | 2015
Tracey A. Oudenhoven; Yongho Joo; Jennifer E. Laaser; Padma Gopalan; Martin T. Zanni
We report that a model dye, Re(CO)3(bypy)CO2H, aggregates into clusters on TiO2 nanoparticles regardless of our preparation conditions. Using two-dimensional infrared (2D IR) spectroscopy, we have identified characteristic frequencies of monomers, dimers, and trimers. A comparison of 2D IR spectra in solution versus those deposited on TiO2 shows that the propensity to dimerize in solution leads to higher dimer formation on TiO2, but that dimers are formed even if there are only monomers in solution. Aggregates cannot be washed off with standard protocols and are present even at submonolayer coverages. We observe cross peaks between aggregates of different sizes, primarily dimers and trimers, indicating that clusters consist of microdomains in close proximity. 2D IR spectroscopy is used to draw these conclusions from measurements of vibrational couplings, but if molecules are close enough to be vibrationally coupled, then they are also likely to be electronically coupled, which could alter charge transfer.
Langmuir | 2017
Kyle M. McElhinny; Peishen Huang; Yongho Joo; Catherine Kanimozhi; Arunee Lakkham; Kenji Sakurai; Paul G. Evans; Padma Gopalan
The structural configuration of molecules assembled at organic-inorganic interfaces within electronic materials strongly influences the functional electronic and vibrational properties relevant to applications ranging from energy storage to photovoltaics. Controlling and characterizing the structural state of an interface and its evolution under external stimuli is crucial both for the fundamental understanding of the factors influenced by molecular structure and for the development of methods for material synthesis. It has been challenging to create complete molecular monolayers that exhibit external reversible control of the structure and electronic configuration. We report a monolayer/inorganic interface consisting of an organic monolayer assembled on an oxide surface, exhibiting structural and electronic reconfiguration under ultraviolet illumination. The molecular monolayer is linked to the surface through a carboxylate link, with the backbone bearing an azobenzene functional group and the head group consisting of a rhenium-bipyridine group. Optical spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray reflectivity show that closely packed monolayers are formed from these molecules via the Langmuir-Blodgett technique. Reversible photoisomerization is observed in solution and in monolayers assembled on Si and quartz substrates. The reconfiguration of these monolayers provides additional means to control excitation and charge transfer processes that are important in applications in catalysis, molecular electronics, and solar energy conversion.
Langmuir | 2014
Yongho Joo; Josef W. Spalenka; Kyle M. McElhinny; Samantha K. Schmitt; Paul G. Evans; Padma Gopalan
We demonstrate the Langmuir-Blodgett assembly of two rhenium-bipyridine complexes containing a flexible or an aromatic bridge, and transfer of the monolayer to SiO2 and single crystal TiO2 substrates. Both of the complexes (ReEC and Re2TC) have a hydrophilic carboxylic acid group, which preferentially anchors into the water subphase, and forms stable monolayers at surface pressures up to 40 mN/m. The optimum conditions for the formation of complete monolayers of both ReEC and Re2TC were identified through characterization of the morphology by atomic force microscopy (AFM), the thickness by ellipsometry, and the surface coverage by X-ray photoelectron spectroscopy (XPS). X-ray reflectivity measurements (XRR) are consistent with the orientation of the molecules normal to the substrate, and their extension to close to their calculated maximum length. Parameters derived from XRR analysis show that there is a higher packing density for Re2TC monolayers than for ReEC monolayers, attributable to the more rigid bridge in the Re2TC molecule.
Langmuir | 2017
Xin Yin; Yeqi Shi; Yanbing Wei; Yongho Joo; Padma Gopalan; Izabela Szlufarska; Xudong Wang
Ionic layer epitaxy (ILE) has recently been developed as an effective strategy to synthesize nanometer thick 2D materials with a nonlayered crystal structure, such as ZnO. The packing density of the amphiphilic monolayer is believed to be a key parameter that controls the nanosheet nucleation and growth. In this work, we systematically investigated the growth behavior of single-crystalline ZnO nanosheets templated at the water-air interface by an anionic oleylsulfate monolayer with different packing densities. The thicknesses of ZnO nanosheets were tuned from one unit cell to four unit cells and exhibited good correlation with the width of Zn2+ ion concentration zone (the Stern layer) underneath the ionized surfactant monolayer. Further analysis of the nanosheet sizes and density revealed that the nanosheet growth was dominated by the steric hindrance from the surfactant monolayer at lower surface pressure, while the nucleation density became the dominating factor at higher surface pressure. The ZnO nanosheets exhibited a decreasing work function as the thickness reduced to a few unit cells. This research validated a critical hypothesis that the nanosheet growth is self-limited by the formation of a double layer of ionic precursors. This work will open up a new way toward controlled synthesis of novel 2D nanosheets from nonlayered materials with a thickness down to one unit cell.
Applied Physics Letters | 2015
David J. McGee; John J. Ferrie; Aljoscha Plachy; Yongho Joo; Jonathan W. Choi; Catherine Kanimozhi; Padma Gopalan
We demonstrate that a single-walled carbon nanotube network noncovalently coupled with a pyrene-modified azo-benzene chromophore functions as a host matrix for a broad range of photo-orientation and photomechanical effects. The chromophore could be efficiently reoriented through repeated trans-cis-trans isomerization under linearly polarized 480 nm light, with Δn of 0.012 at 650 nm and fast characteristic rise-times of 0.12 s. Erasable phase diffraction gratings could also be written, with permanent surface relief gratings forming at sufficiently long irradiation times. In addition to demonstrating a mechanism for photo-manipulation of single-walled carbon nanotubes, these results show photo-orientation of chromophores in azo-functionalized single-walled carbon nanotube networks as a path towards the photosensitive tuning of the electrostatic environment of the nanotube.
Langmuir | 2014
Yongho Joo; Gerald J. Brady; Michael S. Arnold; Padma Gopalan