Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geraldine A. O'Hara is active.

Publication


Featured researches published by Geraldine A. O'Hara.


Science Translational Medicine | 2012

Novel Adenovirus-Based Vaccines Induce Broad and Sustained T Cell Responses to HCV in Man

Eleanor Barnes; Antonella Folgori; Stefania Capone; Leo Swadling; Aston S; Ayako Kurioka; Joel Meyer; Huddart R; Smith K; Townsend R; Anthony Brown; Richard D. Antrobus; Ammendola; M. Naddeo; Geraldine A. O'Hara; Christian B. Willberg; Harrison A; Fabiana Grazioli; Maria Luisa Esposito; Loredana Siani; Cinzia Traboni; Ye Oo; David J. Adams; Adrian V. S. Hill; Stefano Colloca; Alfredo Nicosia; Riccardo Cortese; Paul Klenerman

An adenoviral HCV vaccine induces antiviral T cell responses in human volunteers. Hepatitis Hide and Seek Like venture capitalists and Wall Street bankers, patients receiving results of their blood work don’t like surprises, and more than money is at stake. Because infections caused by the hepatitis C virus (HCV) frequently are asymptomatic, patients might not know they’ve been infected: Symptoms don’t usually appear until irreversible liver scarring has occurred, which may cause cirrhosis, liver failure, or cancer. Even if infection is caught early, current therapies to combat this stealth virus have serious side effects, and there is no vaccine to prevent or treat HCV infection. Now, Barnes et al. demonstrate that vaccines developed with adenoviral vectors can induce broad and sustained immune responses to HCV in humans. Adenoviral vectors have shown promise in vaccine trials in animal models; however, preexisting immunity to common serotypes in humans has limited their use. In a phase 1 clinical trial, Barnes et al. vaccinated healthy subjects with two rare serotype adenoviral vectors that expressed an HCV protein. Both the human and the chimp adenoviral vaccinations elicited HCV-specific immune responses in the recipients that responded to multiple HCV antigens, were sustained for at least a year with boost, and elicited memory responses. And the researchers got a surprise they liked: Vaccination primed T cells to respond to multiple HCV strains at a level consistent with protective immunity. Further trials will be needed to confirm protective or therapeutic roles in HCV-infected individuals. Currently, no vaccine exists for hepatitis C virus (HCV), a major pathogen thought to infect 170 million people globally. Many studies suggest that host T cell responses are critical for spontaneous resolution of disease, and preclinical studies have indicated a requirement for T cells in protection against challenge. We aimed to elicit HCV-specific T cells with the potential for protection using a recombinant adenoviral vector strategy in a phase 1 study of healthy human volunteers. Two adenoviral vectors expressing NS proteins from HCV genotype 1B were constructed based on rare serotypes [human adenovirus 6 (Ad6) and chimpanzee adenovirus 3 (ChAd3)]. Both vectors primed T cell responses against HCV proteins; these T cell responses targeted multiple proteins and were capable of recognizing heterologous strains (genotypes 1A and 3A). HCV-specific T cells consisted of both CD4+ and CD8+ T cell subsets; secreted interleukin-2, interferon-γ, and tumor necrosis factor–α; and could be sustained for at least a year after boosting with the heterologous adenoviral vector. Studies using major histocompatibility complex peptide tetramers revealed long-lived central and effector memory pools that retained polyfunctionality and proliferative capacity. These data indicate that an adenoviral vector strategy can induce sustained T cell responses of a magnitude and quality associated with protective immunity and open the way for studies of prophylactic and therapeutic vaccines for HCV.


Nature Communications | 2013

Protective CD8 + T-cell immunity to human malaria induced by chimpanzee adenovirus-MVA immunisation

Katie Ewer; Geraldine A. O'Hara; Christopher J. A. Duncan; Katharine A. Collins; Susanne H. Sheehy; Arturo Reyes-Sandoval; Anna L. Goodman; Nick J. Edwards; Sean C. Elias; Fenella D. Halstead; Rhea J. Longley; Rosalind Rowland; Ian D. Poulton; Simon J. Draper; Andrew M. Blagborough; Eleanor Berrie; Sarah Moyle; Nicola Williams; Loredana Siani; Antonella Folgori; Stefano Colloca; Robert E. Sinden; Alison M. Lawrie; Riccardo Cortese; Sarah C. Gilbert; Alfredo Nicosia; Adrian V. S. Hill

Induction of antigen-specific CD8+ T cells offers the prospect of immunization against many infectious diseases, but no subunit vaccine has induced CD8+ T cells that correlate with efficacy in humans. Here we demonstrate that a replication-deficient chimpanzee adenovirus vector followed by a modified vaccinia virus Ankara booster induces exceptionally high frequency T-cell responses (median >2400 SFC/106 peripheral blood mononuclear cells) to the liver-stage Plasmodium falciparum malaria antigen ME-TRAP. It induces sterile protective efficacy against heterologous strain sporozoites in three vaccinees (3/14, 21%), and delays time to patency through substantial reduction of liver-stage parasite burden in five more (5/14, 36%), P=0.008 compared with controls. The frequency of monofunctional interferon-γ-producing CD8+ T cells, but not antibodies, correlates with sterile protection and delay in time to patency (Pcorrected=0.005). Vaccine-induced CD8+ T cells provide protection against human malaria, suggesting that a major limitation of previous vaccination approaches has been the insufficient magnitude of induced T cells.


Human Vaccines | 2010

Prime-boost vectored malaria vaccines: progress and prospects.

Adrian V. S. Hill; Arturo Reyes-Sandoval; Geraldine A. O'Hara; Katie Ewer; Alison M. Lawrie; Anna L. Goodman; Alfredo Nicosia; Antonella Folgori; Stefano Colloca; Riccardo Cortese; Sarah C. Gilbert; Simon J. Draper

The difficulty of inducing protective immunity through antibodies against sporozoites led to efforts to assess vectored vaccines as a means of inducing protective T cell immunity against the malaria liver-stage parasite. Although DNA vectored vaccines used alone were poorly immunogenic and not protective, high levels of parasite clearance in the liver has been achieved with viral vectored vaccines used in heterologous prime-boost regimes. Such vectored vaccination regimes represent one of only two approaches that have induced repeatable partial efficacy in human P. falciparum subunit vaccine trials. Interestingly, vectors expressing the TRAP antigen have been consistently been more immunogenic and protective than vectors expressing the circumsporozoite protein in human trials. However, sterile protection requires induction of very potent T cell responses that are currently only achievable with heterologous prime-boost regimes. Recently, simian adenoviruses have been assessed as priming agents in Adenovirus-MVA regimes in both phase I and phase IIa trials in the UK, based on very promising pre-clinical results showing better immunogenicity and efficacy than previous prime-boost regimes. The same vectors are also being assessed clinically expressing blood-stage antigens, attempting to induce both protective antibodies and T cells as recently demonstrated in murine efficacy studies. These viral vectors now provide a major option for inclusion in a high efficacy multi-stage malaria vaccine that should achieve deployable levels of efficacy in endemic settings.


Science Translational Medicine | 2012

Vaccine vectors derived from a large collection of simian adenoviruses induce potent cellular immunity across multiple species.

Stefano Colloca; E. Barnes; Antonella Folgori; Ammendola; Stefania Capone; Cirillo A; Loredana Siani; M. Naddeo; Fabiana Grazioli; Maria Luisa Esposito; Ambrosio M; Sparacino A; Bartiromo M; Meola A; Smith K; Ayako Kurioka; Geraldine A. O'Hara; Katie Ewer; Nicholas A. Anagnostou; Carly M. Bliss; Adrian V. S. Hill; Cinzia Traboni; Paul Klenerman; Riccardo Cortese; Alfredo Nicosia

Simian adenoviruses screened from wild-derived candidates can prime T cell responses in man and may serve as new vaccine vector candidates. Deepening the Talent Pool Whether you’re talking about drafting for a professional sports team or hiring new lab staff, increasing the number of candidates improves your chances of the truly exceptional find. When it comes to vaccine vectors, the pool of human adenovirus candidates has been quite shallow. Although certain vectors are highly immunogenic in animal models, they can be neutralized by preexisting antibodies in humans. Yet, Colloca et al. show that viruses that are more rare in humans and are thus less likely to be neutralized are not as immunogenic. Therefore, the authors deepened the vector pool by isolating more than 1000 adenovirus strains from chimpanzees. They identified vectors that grew in human cells and were not neutralized by human sera and prevented them from replicating. As with human adenoviral vectors, different simian vectors induced either more or less potent immune responses in mice. The more potent of these vectors were also immunogenic in humans. These chimp adenoviral vectors provide such embarrassment of riches that different vectors could be used for each vaccine target, lowering the chances of subsequent cross-reactive neutralization. Thus, these vectors serve as prime candidates for future vaccine development. Replication-defective adenovirus vectors based on human serotype 5 (Ad5) induce protective immune responses against diverse pathogens and cancer in animal models, as well as elicit robust and sustained cellular immunity in humans. However, most humans have neutralizing antibodies to Ad5, which can impair the immunological potency of such vaccines. Here, we show that rare serotypes of human adenoviruses, which should not be neutralized in most humans, are far less potent as vaccine vectors than Ad5 in mice and nonhuman primates, casting doubt on their potential efficacy in humans. To identify novel vaccine carriers suitable for vaccine delivery in humans, we isolated and sequenced more than 1000 adenovirus strains from chimpanzees (ChAd). Replication-defective vectors were generated from a subset of these ChAd serotypes and screened to determine whether they were neutralized by human sera and able to grow in human cell lines. We then ranked these ChAd vectors by immunological potency and found up to a thousandfold variation in potency for CD8+ T cell induction in mice. These ChAd vectors were safe and immunologically potent in phase 1 clinical trials, thereby validating our screening approach. These data suggest that the ChAd vectors developed here represent a large collection of non–cross-reactive, potent vectors that may be exploited for the development of new vaccines.


The Journal of Infectious Diseases | 2012

Clinical Assessment of a Recombinant Simian Adenovirus ChAd63: A Potent New Vaccine Vector

Geraldine A. O'Hara; Christopher J. A. Duncan; Katie Ewer; Katharine A. Collins; Sean C. Elias; Fenella D. Halstead; Anna L. Goodman; Nick J. Edwards; Arturo Reyes-Sandoval; Prudence Bird; Rosalind Rowland; Susanne H. Sheehy; Ian D. Poulton; Claire Hutchings; Stephen Todryk; Laura Andrews; Antonella Folgori; Eleanor Berrie; Sarah Moyle; Alfredo Nicosia; Stefano Colloca; Riccardo Cortese; Loredana Siani; Alison M. Lawrie; Sarah C. Gilbert; Adrian V. S. Hill

Background. Vaccine development in human Plasmodium falciparum malaria has been hampered by the exceptionally high levels of CD8+ T cells required for efficacy. Use of potently immunogenic human adenoviruses as vaccine vectors could overcome this problem, but these are limited by preexisting immunity to human adenoviruses. Methods. From 2007 to 2010, we undertook a phase I dose and route finding study of a new malaria vaccine, a replication-incompetent chimpanzee adenovirus 63 (ChAd63) encoding the preerythrocytic insert multiple epitope thrombospondin-related adhesion protein (ME-TRAP; n = 54 vaccinees) administered alone (n = 28) or with a modified vaccinia virus Ankara (MVA) ME-TRAP booster immunization 8 weeks later (n = 26). We observed an excellent safety profile. High levels of TRAP antigen–specific CD8+ and CD4+ T cells, as detected by interferon γ enzyme-linked immunospot assay and flow cytometry, were induced by intramuscular ChAd63 ME-TRAP immunization at doses of 5 × 1010 viral particles and above. Subsequent administration of MVA ME-TRAP boosted responses to exceptionally high levels, and responses were maintained for up to 30 months postvaccination. Conclusions. The ChAd63 chimpanzee adenovirus vector appears safe and highly immunogenic, providing a viable alternative to human adenoviruses as vaccine vectors for human use. Clinical Trials Registration. NCT00890019.


PLOS ONE | 2012

Phase Ia clinical evaluation of the safety and immunogenicity of the Plasmodium falciparum blood-stage antigen AMA1 in ChAd63 and MVA vaccine vectors.

Susanne H. Sheehy; Christopher J. A. Duncan; Sean C. Elias; Sumi Biswas; Katharine A. Collins; Geraldine A. O'Hara; Fenella D. Halstead; Katie Ewer; Tabitha Mahungu; Alexandra J. Spencer; Kazutoyo Miura; Ian D. Poulton; Matthew D. J. Dicks; Nick J. Edwards; Eleanor Berrie; Sarah Moyle; Stefano Colloca; Riccardo Cortese; Katherine Gantlett; Carole A. Long; Alison M. Lawrie; Sarah C. Gilbert; Tom Doherty; Alfredo Nicosia; Adrian V. S. Hill; Simon J. Draper

Background Traditionally, vaccine development against the blood-stage of Plasmodium falciparum infection has focused on recombinant protein-adjuvant formulations in order to induce high-titer growth-inhibitory antibody responses. However, to date no such vaccine encoding a blood-stage antigen(s) alone has induced significant protective efficacy against erythrocytic-stage infection in a pre-specified primary endpoint of a Phase IIa/b clinical trial designed to assess vaccine efficacy. Cell-mediated responses, acting in conjunction with functional antibodies, may be necessary for immunity against blood-stage P. falciparum. The development of a vaccine that could induce both cell-mediated and humoral immune responses would enable important proof-of-concept efficacy studies to be undertaken to address this question. Methodology We conducted a Phase Ia, non-randomized clinical trial in 16 healthy, malaria-naïve adults of the chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) replication-deficient viral vectored vaccines encoding two alleles (3D7 and FVO) of the P. falciparum blood-stage malaria antigen; apical membrane antigen 1 (AMA1). ChAd63-MVA AMA1 administered in a heterologous prime-boost regime was shown to be safe and immunogenic, inducing high-level T cell responses to both alleles 3D7 (median 2036 SFU/million PBMC) and FVO (median 1539 SFU/million PBMC), with a mixed CD4+/CD8+ phenotype, as well as substantial AMA1-specific serum IgG responses (medians of 49 µg/mL and 41 µg/mL for 3D7 and FVO AMA1 respectively) that demonstrated growth inhibitory activity in vitro. Conclusions ChAd63-MVA is a safe and highly immunogenic delivery platform for both alleles of the AMA1 antigen in humans which warrants further efficacy testing. ChAd63-MVA is a promising heterologous prime-boost vaccine strategy that could be applied to numerous other diseases where strong cellular and humoral immune responses are required for protection. Trial Registration ClinicalTrials.gov NCT01095055


Trends in Immunology | 2012

Memory T cell inflation: understanding cause and effect

Geraldine A. O'Hara; Suzanne P. M. Welten; Paul Klenerman; Ramon Arens

Typically, during viral infections, T cells encounter antigen, undergo proliferative expansion and ultimately contract into a pool of memory cells. However, after infection with cytomegalovirus, a ubiquitous β-herpesvirus, T cell populations specific for certain epitopes do not contract but instead are maintained and/or accumulate at high frequencies with a characteristic effector-memory phenotype. This feature has also been noted after other infections, for example, by parvoviruses. We discuss this so-called memory T cell inflation and the factors involved in this phenomenon. Also, we consider the potential therapeutic use of memory T cell inflation as a vaccine strategy and the associated implications for immune senescence.


PLOS ONE | 2011

A Dominant Role for the Immunoproteasome in CD8+ T Cell Responses to Murine Cytomegalovirus

Sarah L. Hutchinson; Stuart Sims; Geraldine A. O'Hara; Jon Silk; Uzi Gileadi; Vincenzo Cerundolo; Paul Klenerman

Murine cytomegalovirus (MCMV) is an important animal model of human cytomegalovirus (HCMV), a β-Herpesvirus that infects the majority of the worlds population and causes disease in neonates and immunocompromised adults. CD8+ T cells are a major part of the immune response to MCMV and HCMV. Processing of peptides for presentation to CD8+ T cells may be critically dependent on the immunoproteasome, expression of which is affected by MCMV. However, the overall importance of the immunoproteasome in the generation of immunodominant peptides from MCMV is not known. We therefore examined the role of the immunoproteasome in stimulation of CD8+ T cell responses to MCMV – both conventional memory responses and those undergoing long-term expansion or “inflation”. We infected LMP7−/− and C57BL/6 mice with MCMV or with newly-generated recombinant vaccinia viruses (rVVs) encoding the immunodominant MCMV protein M45 in either full-length or epitope-only minigene form. We analysed CD8+ T cell responses using intracellular cytokine stain (ICS) and MHC Class I tetramer staining for a panel of MCMV-derived epitopes. We showed a critical role for immunoproteasome in MCMV affecting all epitopes studied. Interestingly we found that memory “inflating” epitopes demonstrate reduced immunoproteasome dependence compared to non-inflating epitopes. M45-specific responses induced by rVVs remain immunoproteasome-dependent. These results help to define a critical restriction point for CD8+ T cell epitopes in natural cytomegalovirus (CMV) infection and potentially in vaccine strategies against this and other viruses.


PLOS ONE | 2012

Comparison of clinical and parasitological data from controlled human malaria infection trials

Meta Roestenberg; Geraldine A. O'Hara; Christopher J. A. Duncan; Judith E. Epstein; Nick J. Edwards; Anja Scholzen; Andre van der Ven; Cornelus C. Hermsen; Adrian V. S. Hill; Robert W. Sauerwein

Background Exposing healthy human volunteers to Plasmodium falciparum-infected mosquitoes is an accepted tool to evaluate preliminary efficacy of malaria vaccines. To accommodate the demand of the malaria vaccine pipeline, controlled infections are carried out in an increasing number of centers worldwide. We assessed their safety and reproducibility. Methods We reviewed safety and parasitological data from 128 malaria-naïve subjects participating in controlled malaria infection trials conducted at the University of Oxford, UK, and the Radboud University Nijmegen Medical Center, The Netherlands. Results were compared to a report from the US Military Malaria Vaccine Program. Results We show that controlled human malaria infection trials are safe and demonstrate a consistent safety profile with minor differences in the frequencies of arthralgia, fatigue, chills and fever between institutions. But prepatent periods show significant variation. Detailed analysis of Q-PCR data reveals highly synchronous blood stage parasite growth and multiplication rates. Conclusions Procedural differences can lead to some variation in safety profile and parasite kinetics between institutions. Further harmonization and standardization of protocols will be useful for wider adoption of these cost-effective small-scale efficacy trials. Nevertheless, parasite growth rates are highly reproducible, illustrating the robustness of controlled infections as a valid tool for malaria vaccine development.


The Journal of Infectious Diseases | 2013

Comparison of Modeling Methods to Determine Liver-to-blood Inocula and Parasite Multiplication Rates During Controlled Human Malaria Infection

Alexander D. Douglas; Nick J. Edwards; Christopher J. A. Duncan; Fiona M. Thompson; Susanne H. Sheehy; Geraldine A. O'Hara; Nicholas A. Anagnostou; Michael Walther; Daniel P. Webster; Susanna Dunachie; David Porter; Laura Andrews; Sarah C. Gilbert; Simon J. Draper; Adrian V. S. Hill; Philip Bejon

Controlled human malaria infection is used to measure efficacy of candidate malaria vaccines before field studies are undertaken. Mathematical modeling using data from quantitative polymerase chain reaction (qPCR) parasitemia monitoring can discriminate between vaccine effects on the parasites liver and blood stages. Uncertainty regarding the most appropriate modeling method hinders interpretation of such trials. We used qPCR data from 267 Plasmodium falciparum infections to compare linear, sine-wave, and normal-cumulative-density-function models. We find that the parameters estimated by these models are closely correlated, and their predictive accuracy for omitted data points was similar. We propose that future studies include the linear model.

Collaboration


Dive into the Geraldine A. O'Hara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge