Gerard E. Kaiko
University of Newcastle
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gerard E. Kaiko.
Immunology | 2008
Gerard E. Kaiko; Jay C. Horvat; Kenneth W. Beagley; Philip M. Hansbro
Aberrant T‐cell responses underpin a range of diseases, including asthma and allergy and autoimmune diseases. Pivotal immune elements of these diseases are the development of antigen‐specific effector T‐helper type 2 (Th2) cells, Th1 cells, or the recently defined Th17 cells that are associated with the clinical features and disease progression. In order to identify crucial processes in the pathogenesis of these diseases it is critical to understand how the development of these T cells occurs. The phenotype of a polarized T‐cell that differentiates from a naïve precursor is determined by the complex interaction of antigen‐presenting cells with naïve T cells and involves a multitude of factors, including the dominant cytokine environment, costimulatory molecules, type and load of antigen presented and a plethora of signaling cascades. The decision to take the immune response in a certain direction is not made by one signal alone, instead many different elements act synergistically, antagonistically and through positive feedback loops to activate a Th1, Th2, or Th17 immune response. The elucidation of the mechanisms of selection of T‐cell phenotype will facilitate the development of therapeutic strategies to intervene in the development of deleterious T‐cell responses. This review will focus on the pathways and key factors responsible for the differentiation of the various subsets of effector CD4 T cells. We will primarily discuss what is known of the Th1 and Th2 differentiation pathways, while also reviewing the emerging research on Th17 differentiation.
American Journal of Respiratory and Critical Care Medicine | 2009
Simon Phipps; Chuan En Lam; Gerard E. Kaiko; Shen Yun Foo; Adam Collison; Joerg Mattes; Jessica Barry; Sophia Davidson; Kevin M. Oreo; Lauren Smith; Ashley Mansell; Klaus I. Matthaei; Paul S. Foster
RATIONALE One of the immunopathological features of allergic inflammation is the infiltration of helper T type 2 (Th2) cells to the site of disease. Activation of innate pattern recognition receptors such as Toll-like receptors (TLRs) plays a critical role in helper T type 1 cell differentiation, yet their contribution to the generation of Th2 responses to clinically relevant aeroallergens remains poorly defined. OBJECTIVES To determine the requirement for TLR2, TLR4, and the Toll/IL-1 receptor domain adaptor protein MyD88 in a murine model of allergic asthma. METHODS Wild-type and factor-deficient ((-/-)) mice were sensitized intranasally to the common allergen house dust mite (HDM) and challenged 2 weeks later on four consecutive days. Measurements of allergic airway inflammation, T-cell cytokine production, and airway hyperreactivity were performed 24 hours later. MEASUREMENTS AND MAIN RESULTS Mice deficient in MyD88 were protected from the cardinal features of allergic asthma, including granulocytic inflammation, Th2 cytokine production and airway hyperreactivity. Although HDM activated NF-kappaB in TLR2- or TLR4-expressing HEK cells, only in TLR4(-/-) mice was the magnitude of allergic airway inflammation and hyperreactivity attenuated. The diminished Th2 response present in MyD88(-/-) and TLR4(-/-) mice was associated with fewer OX40 ligand-expressing myeloid dendritic cells in the draining lymph nodes during allergic sensitization. Finally, HDM-specific IL-17 production and airway neutrophilia were attenuated in MyD88(-/-) but not TLR4(-/-) mice. CONCLUSIONS Together, these data suggest that Th2- and Th17-mediated inflammation generated on inhalational HDM exposure is differentially regulated by the presence of microbial products and the activation of distinct MyD88-dependent pattern recognition receptors.
American Journal of Respiratory and Critical Care Medicine | 2009
Simon Phipps; Chuan En Lam; Gerard E. Kaiko; Shen Yun Foo; Adam Collison; Joerg Mattes; Jessica Barry; Sophia Davidson; Kevin M. Oreo; Lauren Smith; Ashley Mansell; Klaus I. Matthaei; Paul S. Foster
RATIONALE One of the immunopathological features of allergic inflammation is the infiltration of helper T type 2 (Th2) cells to the site of disease. Activation of innate pattern recognition receptors such as Toll-like receptors (TLRs) plays a critical role in helper T type 1 cell differentiation, yet their contribution to the generation of Th2 responses to clinically relevant aeroallergens remains poorly defined. OBJECTIVES To determine the requirement for TLR2, TLR4, and the Toll/IL-1 receptor domain adaptor protein MyD88 in a murine model of allergic asthma. METHODS Wild-type and factor-deficient ((-/-)) mice were sensitized intranasally to the common allergen house dust mite (HDM) and challenged 2 weeks later on four consecutive days. Measurements of allergic airway inflammation, T-cell cytokine production, and airway hyperreactivity were performed 24 hours later. MEASUREMENTS AND MAIN RESULTS Mice deficient in MyD88 were protected from the cardinal features of allergic asthma, including granulocytic inflammation, Th2 cytokine production and airway hyperreactivity. Although HDM activated NF-kappaB in TLR2- or TLR4-expressing HEK cells, only in TLR4(-/-) mice was the magnitude of allergic airway inflammation and hyperreactivity attenuated. The diminished Th2 response present in MyD88(-/-) and TLR4(-/-) mice was associated with fewer OX40 ligand-expressing myeloid dendritic cells in the draining lymph nodes during allergic sensitization. Finally, HDM-specific IL-17 production and airway neutrophilia were attenuated in MyD88(-/-) but not TLR4(-/-) mice. CONCLUSIONS Together, these data suggest that Th2- and Th17-mediated inflammation generated on inhalational HDM exposure is differentially regulated by the presence of microbial products and the activation of distinct MyD88-dependent pattern recognition receptors.
Journal of Immunology | 2010
Gerard E. Kaiko; Simon Phipps; Pornpimon Angkasekwinai; Chen Dong; Paul S. Foster
Severe respiratory syncytial virus (RSV) infection has long been associated with an increased risk for the development of childhood asthma and exacerbations of this disorder. Despite much research into the induction of Th2 responses by allergens and helminths, the factors associated with viral infection that predispose to Th2-regulated asthma remain unknown. Recently, clinical studies have shown reduced numbers of NK cells in infants suffering from a severe RSV infection. Here we demonstrate that NK cell deficiency during primary RSV infection of BALB/c mice results in the suppression of IFN-γ production and the development of an RSV-specific Th2 response and subsequent allergic lung disease. The outgrowth of the Th2 responses was dependent on airway epithelial cell-derived IL-25, which induced the upregulation of the notch ligand Jagged1 on dendritic cells. This study identifies a novel pathway underlying viral-driven Th2 responses that may have functional relevance to viral-associated asthma.
British Journal of Pharmacology | 2011
Philip M. Hansbro; Gerard E. Kaiko; Paul S. Foster
Asthma is a chronic inflammatory disease of the airways and there are no preventions or cures. Inflammatory cells through the secretion of cytokines and pro‐inflammatory molecules are thought to play a critical role in pathogenesis. Type 2 CD4+ lymphocytes (Th2 cells) and their cytokines predominate in mild to moderate allergic asthma, whereas severe steroid‐resistant asthma has more of a mixed Th2/Th1 phenotype with a Th17 component. Other immune cells, particularly neutrophils, macrophages and dendritic cells, as well structural cells such as epithelial and airway smooth muscle cells also produce disease‐associated cytokines in asthma. Increased levels of these immune cells and cytokines have been identified in clinical samples and their potential role in disease demonstrated in studies using mouse models of asthma. Clinical trials with inhibitors of cytokines such as interleukin (IL)‐4, ‐5 and tumour necrosis factor‐α have had success in some studies but not others. This may reflect the design of the clinical trials, including treatments regimes and the patient population included in these studies. IL‐13, ‐9 and granulocyte‐macrophage colony‐stimulating factor are currently being evaluated in clinical trials or preclinically and the outcome of these studies is eagerly awaited. Roles for IL‐25, ‐33, thymic stromal lymphopoietin, interferon‐γ, IL‐17 and ‐27 in the regulation of asthma are just emerging, identifying new ways to treat inflammation. Careful interpretation of results from mouse studies will inform the development and application of therapeutic approaches for asthma. The most effective approaches may be combination therapies that suppress multiple cytokines and a range of redundant and disconnected pathways that separately contribute to asthma pathogenesis. Astute application of these approaches may eventually lead to the development of effective asthma therapeutics. Here we review the current state of knowledge in the field.
Immunological Reviews | 2013
Paul S. Foster; Maximilian Plank; Adam Collison; Hock L. Tay; Gerard E. Kaiko; JingJing Li; Sebastian L. Johnston; Philip M. Hansbro; Rakesh K. Kumar; Ming Yang; Joerg Mattes
Chronic inflammatory diseases of the lung are leading causes of morbidity and mortality worldwide. Many of these disorders can be attributed to abnormal immune responses to environmental stimuli and infections. As such, understanding the innate host defense pathways and their regulatory systems will be critical to developing new approaches to treatment. In this regard, there is increasing interest in the role of microRNAs (miRNAs) in the regulation of pulmonary innate host defense responses and the inflammatory sequelae in respiratory disease. In this review, we discuss recent findings that indicate an important role for miRNAs in the regulation in mouse models of various respiratory diseases and in host defense against bacterial and viral infection. We also discuss the potential utility and limitations of targeting these molecules as anti‐inflammatory strategies and also as a means to improve pathogen clearance from the lung.
Journal of Immunology | 2011
Sophia Davidson; Gerard E. Kaiko; Zhixuan Loh; Amit Lalwani; Vivian Zhang; Kirsten Spann; Shen Yun Foo; Nicole G. Hansbro; Satoshi Uematsu; Shizuo Akira; Klaus I. Matthaei; Helene F. Rosenberg; Paul S. Foster; Simon Phipps
Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in infants. In human infants, plasmacytoid dendritic cells (pDC) are recruited to the nasal compartment during infection and initiate host defense through the secretion of type I IFN, IL-12, and IL-6. However, RSV-infected pDC are refractory to TLR7-mediated activation. In this study, we used the rodent-specific pathogen, pneumonia virus of mice (PVM), to determine the contribution of pDC and TLR7 signaling to the development of the innate inflammatory and early adaptive immune response. In wild-type, but not TLR7- or MyD88-deficient mice, PVM inoculation led to a marked infiltration of pDC and increased expression of type I, II, and III IFNs. The delayed induction of IFNs in the absence of TLR7 or MyD88 was associated with a diminished innate inflammatory response and augmented virus recovery from lung tissue. In the absence of TLR7, PVM-specific CD8+ T cell cytokine production was abrogated. The adoptive transfer of TLR7-sufficient, but not TLR7-deficient pDC to TLR7 gene-deleted mice recapitulated the antiviral responses observed in wild-type mice and promoted virus clearance. In summary, TLR7-mediated signaling by pDC is required for appropriate innate responses to acute pneumovirus infection. It is conceivable that as-yet–unidentified defects in the TLR7 signaling pathway may be associated with elevated levels of RSV-associated morbidity and mortality among otherwise healthy human infants.
Trends in Immunology | 2014
Gerard E. Kaiko; Thaddeus S. Stappenbeck
Tremendous advances have been made in mapping the complexity of the human gut microbiota in both health and disease states. These analyses have revealed that, rather than a constellation of individual species, a healthy microbiota comprises an interdependent network of microbes. The microbial and host interactions that shape both this network and the gastrointestinal environment are areas of intense investigation. Here we review emerging concepts of how microbial metabolic processes control commensal composition, invading pathogens, immune activation, and intestinal barrier function. We posit that all of these factors are critical for the maintenance of homeostasis and avoidance of overt inflammatory disease. A greater understanding of the underlying mechanisms will shed light on the pathogenesis of many diseases and guide new therapeutic interventions.
Cell Host & Microbe | 2015
Christina A. Hickey; Kristine A. Kuhn; David L. Donermeyer; Nathan T. Porter; Chunsheng Jin; Elizabeth A. Cameron; Haerin Jung; Gerard E. Kaiko; Marta Wegorzewska; Nicole P. Malvin; Robert W.P. Glowacki; Gunnar C. Hansson; Paul M. Allen; Eric C. Martens; Thaddeus S. Stappenbeck
Microbes interact with the host immune system via several potential mechanisms. One essential step for each mechanism is the method by which intestinal microbes or their antigens access specific host immune cells. Using genetically susceptible mice (dnKO) that develop spontaneous, fulminant colitis, triggered by Bacteroides thetaiotaomicron (B. theta), we investigated the mechanism of intestinal microbial access under conditions that stimulate colonic inflammation. B. theta antigens localized to host immune cells through outer membrane vesicles (OMVs) that harbor bacterial sulfatase activity. We deleted the anaerobic sulfatase maturating enzyme (anSME) from B. theta, which is required for post-translational activation of all B. theta sulfatase enzymes. This bacterial mutant strain did not stimulate colitis in dnKO mice. Lastly, access of B. theta OMVs to host immune cells was sulfatase dependent. These data demonstrate that bacterial OMVs and associated enzymes promote inflammatory immune stimulation in genetically susceptible hosts.
PLOS Pathogens | 2011
Kelly L. Asquith; Jay C. Horvat; Gerard E. Kaiko; Alison J. Carey; Kenneth W. Beagley; Philip M. Hansbro; Paul S. Foster
Chlamydiae are intracellular bacteria that commonly cause infections of the respiratory and genital tracts, which are major clinical problems. Infections are also linked to the aetiology of diseases such as asthma, emphysema and heart disease. The clinical management of infection is problematic and antibiotic resistance is emerging. Increased understanding of immune processes that are involved in both clearance and immunopathology of chlamydial infection is critical for the development of improved treatment strategies. Here, we show that IL-13 was produced in the lungs of mice rapidly after Chlamydia muridarum (Cmu) infection and promoted susceptibility to infection. Wild-type (WT) mice had increased disease severity, bacterial load and associated inflammation compared to IL-13 deficient (−/−) mice as early as 3 days post infection (p.i.). Intratracheal instillation of IL-13 enhanced bacterial load in IL-13−/− mice. There were no differences in early IFN-g and IL-10 expression between WT and IL-13−/− mice and depletion of CD4+ T cells did not affect infection in IL-13−/− mice. Collectively, these data demonstrate a lack of CD4+ T cell involvement and a novel role for IL-13 in innate responses to infection. We also showed that IL-13 deficiency increased macrophage uptake of Cmu in vitro and in vivo. Moreover, the depletion of IL-13 during infection of lung epithelial cells in vitro decreased the percentage of infected cells and reduced bacterial growth. Our results suggest that enhanced IL-13 responses in the airways, such as that found in asthmatics, may promote susceptibility to chlamydial lung infection. Importantly the role of IL-13 in regulating infection was not limited to the lung as we showed that IL-13 also promoted susceptibility to Cmu genital tract infection. Collectively our findings demonstrate that innate IL-13 release promotes infection that results in enhanced inflammation and have broad implications for the treatment of chlamydial infections and IL-13-associated diseases.