Gerard E. McMahon
Manchester Metropolitan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gerard E. McMahon.
Journal of Strength and Conditioning Research | 2014
Gerard E. McMahon; Christopher I. Morse; Adrian Burden; Keith Winwood; Gladys L. Onambélé
Abstract McMahon, GE, Morse, CI, Burden, A, Winwood, K, and Onambélé, GL. Impact of range of motion during ecologically valid resistance training protocols on muscle size, subcutaneous fat, and strength. J Strength Cond Res 28(1): 245–255, 2014—The impact of using different resistance training (RT) kinematics, which therefore alters RT mechanics, and their subsequent effect on adaptations remain largely unreported. The aim of this study was to identify the differences to training at a longer (LR) compared with a shorter (SR) range of motion (ROM) and the time course of any changes during detraining. Recreationally active participants in LR (aged 19 ± 2.6 years; n = 8) and SR (aged 19 ± 3.4 years; n = 8) groups undertook 8 weeks of RT and 4 weeks of detraining. Muscle size, architecture, subcutaneous fat, and strength were measured at weeks 0, 8, 10, and 12 (repeated measures). A control group (aged 23 ± 2.4 years; n = 10) was also monitored during this period. Significant (p > 0.05) posttraining differences existed in strength (on average 4 ± 2 vs. 18 ± 2%), distal anatomical cross-sectional area (59 ± 15 vs. 16 ± 10%), fascicle length (23 ± 5 vs. 10 ± 2%), and subcutaneous fat (22 ± 8 vs. 5 ± 2%), with LR exhibiting greater adaptations than SR. Detraining resulted in significant (p > 0.05) deteriorations in all muscle parameters measured in both groups, with the SR group experiencing a more rapid relative loss of postexercise increases in strength than that experienced by the LR group (p > 0.05). Greater morphological and architectural RT adaptations in the LR (owing to higher mechanical stress) result in a more significant increase in strength compared with that of the SR. The practical implications for this body of work follow that LR should be observed in RT where increased muscle strength and size are the objective, because we demonstrate here that ROM should not be compromised for greater external loading.
Journal of Athletic Training | 2013
Georgina K. Stebbings; Christopher I. Morse; Gerard E. McMahon; Gladys L. Onambélé
CONTEXT Disruptions to habitual training routines are commonly due to injury or illness and can often lead to detraining adaptations. The implications of such adaptations to the human vasculature in a trained, asymptomatic population are not fully understood. OBJECTIVE To determine the extent of local and systemic changes in arterial diameter and blood flow to resistance training and subsequent detraining in young adults. DESIGN Randomized controlled clinical trial. SETTING University physiology laboratory and fitness suite. PATIENTS OR OTHER PARTICIPANTS Twenty-one healthy volunteers (aged 20.0 ± 2.8 years, 11 men and 10 women). INTERVENTION(S) Eight-week lower limb resistance training period and subsequent 4-week detraining period. MAIN OUTCOME MEASURE(S) Quadriceps and hamstrings concentric torque (strength), resting heart rate, arterial diameter, and blood flow velocity in the superficial femoral and carotid arteries were measured at 0, 8, 10, and 12 weeks. RESULTS Resistance training increased quadriceps and hamstring strength (32% and 35%, respectively, P < .001), whereas strength decreased during detraining (24% and 27%, respectively, P < .05). Resting heart rate decreased after resistance training (16%, P < .01) and increased during detraining (19%, P < .001). Additionally, resistance training significantly increased superficial femoral and carotid resting arterial diameters (27% and 13%, respectively, P < .001) and mean blood flow (53% and 55%, respectively, P < .001). Detraining resulted in a significant decrease in superficial femoral and carotid resting diameter (46% and 10%, respectively, P < .001) and mean blood flow (61% and 38%, respectively, P < .05). CONCLUSIONS Resistance training initiated both local and systemic changes to arterial diameter and blood flow; these changes appeared to reverse after detraining. The local changes in response to detraining showed a worsening (beyond pretraining values) of the vascular dimensional and blood flow characteristics.
Muscle & Nerve | 2014
Gerard E. McMahon; Christopher I. Morse; Adrian Burden; Keith Winwood; Gladys L. Onambélé
Introduction: Modulation of muscle characteristics was attempted through altering muscle stretch during resistance training. We hypothesized that stretch would enhance muscle responses. Methods: Participants trained for 8 weeks, loading the quadriceps in a shortened (SL, 0–50° knee flexion; n = 10) or lengthened (LL, 40–90°; n = 11) position, followed by 4 weeks of detraining. Controls (CON; n = 10) were untrained. Quadriceps strength, vastus lateralis architecture, anatomical cross‐sectional area (aCSA), and serum insulin‐like growth factor‐1 (IGF‐1) were measured at weeks 0, 8, 10, and 12. Results: Increases in fascicle length (29 ± 4% vs. 14 ± 4%), distal aCSA (53 ± 12% vs. 18 ± 8%), strength (26 ± 6% vs. 7 ± 3%), and IGF‐1 (31 ± 6% vs. 7 ± 6%) were greater in LL compared with SL muscles (P < 0.05). No changes occurred in CON. Detraining decrements in strength and aCSA were greater in SL than LL muscles (P < 0.05). Conclusions: Enhanced muscle in vivo (and somewhat IGF‐1) adaptations to resistance training are concurrent with muscle stretch, which warrants its inclusion within training. Muscle Nerve 49: 108–119, 2014
Physiological Reports | 2013
Gerard E. McMahon; Christopher I. Morse; Adrian Burden; Keith Winwood; Gladys Onambele-Pearson
Modulators of loading‐induced in vivo adaptations in muscle–tendon complex (MTC) mechanical properties remain unclear. Similarly contentious, is whether changes in MTC characteristics are associated with growth factor levels. Four groups were subjected to varying magnitudes of stress/strain: Group 1 trained with the MTC at a shortened position (MTCS; n = 10); Group 2 at a lengthened position (MTCL; n = 11; stress levels matched to MTCS); Group 3 over a wide range of motion (MTCX; n = 11); and Group 4 (n = 10) was the control population (no training). Patella tendon Stiffness (P < 0.001), Youngs modulus, and quadriceps torque (P < 0.05) increments (only seen in the training groups), showed MTCL and MTCX groups responses to be superior to those of MTCS (P < 0.05). In addition, MTCL and MTCX better maintained adaptations compared to MTCS (P < 0.05) following detraining, with a pattern of slower loss of improvements at the early phase of detraining in all training groups. There were no significant changes (P > 0.05) in antagonist cocontraction, patella tendon dimensions or circulating transforming growth factor beta (TGF‐β1) levels following training or detraining in any of the groups. We conclude that chronically loading the MTC in a relatively lengthened position (which involves greater strains) enhances its mechanical properties, more so than loading in a shortened position. This is true even after normalizing for internal stress. The underlying endocrine mechanisms do not appear to be mediated via TGF‐β1, at least not at the systemic level. Our findings have implications with regard to the effectiveness of eccentric loading on improved tendon structural and mechanical properties.
Physiological Genomics | 2016
Shane M. Heffernan; Liam P. Kilduff; Robert M. Erskine; Stephen H. Day; Jamie S. McPhee; Gerard E. McMahon; Georgina K. Stebbings; Joshua P H Neale; Sarah J. Lockey; William J Ribbans; Christian J. Cook; Beth Vance; Stuart M Raleigh; Craig Roberts; Mark A. Bennett; Guan Wang; Malcolm Collins; Yannis Pitsiladis; Alun G. Williams
We aimed to quantify the ACE I/D and ACTN3 R577X (rs1815739) genetic variants in elite rugby athletes (rugby union and league) and compare genotype frequencies to controls and between playing positions. The rugby athlete cohort consisted of 507 Caucasian men, including 431 rugby union athletes that for some analyses were divided into backs and forwards and into specific positional groups: front five, back row, half backs, centers, and back three. Controls were 710 Caucasian men and women. Real-time PCR of genomic DNA was used to determine genotypes using TaqMan probes and groups were compared using χ2 and odds ratio (OR) statistics. Correction of P values for multiple comparisons was according to Benjamini-Hochberg. There was no difference in ACE I/D genotype between groups. ACTN3 XX genotype tended to be underrepresented in rugby union backs (15.7%) compared with forwards (24.8%, P = 0.06). Interestingly, the 69 back three players (wings and full backs) in rugby union included only six XX genotype individuals (8.7%), with the R allele more common in the back three (68.8%) than controls (58.0%; χ2 = 6.672, P = 0.04; OR = 1.60) and forwards (47.5%; χ2 = 11.768, P = 0.01; OR = 2.00). Association of ACTN3 R577X with playing position in elite rugby union athletes suggests inherited fatigue resistance is more prevalent in forwards, while inherited sprint ability is more prevalent in backs, especially wings and full backs. These results also demonstrate the advantage of focusing genetic studies on a large cohort within a single sport, especially when intrasport positional differences exist, instead of combining several sports with varied demands and athlete characteristics.
PLOS ONE | 2018
Gerard E. McMahon; Christopher I. Morse; Keith Winwood; Adrian Burden; Gladys L. Onambélé
Purpose To compare the relative changes in muscle-tendon complex (MTC) properties following high load resistance training (RT) in young males and females, and determine any link with circulating TGFβ-1 and IGF-I levels. Methods Twenty-eight participants were assigned to a training group and subdivided by sex (T males [TM] aged 20±1 year, n = 8, T females [TF] aged 19±3 year, n = 8), whilst age-matched 6 males and 6 females were assigned to control groups (ConM/F). The training groups completed 8 weeks of resistance training (RT). MTC properties (Vastus Lateralis, VL) physiological cross-sectional area (pCSA), quadriceps torque, patella tendon stiffness [K], Young’s modulus, volume, cross-sectional area, and length, circulating levels of TGFβ-1 and IGF-I were assessed at baseline and post RT. Results Post RT, there was a significant increase in the mechanical and morphological properties of the MTC in both training groups, compared to ConM/F (p<0.001). However, there were no significant sex-specific changes in most MTC variables. There were however significant sex differences in changes in K, with females exhibiting greater changes than males at lower MVC (Maximal Voluntary Contraction) force levels (10% p = 0.030 & 20% MVC p = 0.032) and the opposite effect seen at higher force levels (90% p = 0.040 & 100% MVC p = 0.044). There were significant increases (p<0.05) in IGF-I in both TF and TM following training, with no change in TGFβ-1. There were no gender differences (p>0.05) in IGF-I or TGFβ-1. Interestingly, pooled population data showed that TGFβ-1 correlated with K at baseline, with no correlations identified between IGF-I and MTC properties. Conclusions Greater resting TGFβ-1 levels are associated with superior tendon mechanical properties. RT can impact opposite ends of the patella tendon force-elongation relationship in each sex. Thus, different loading patterns may be needed to maximize resistance training adaptations in each sex.
Archive | 2013
Gerard E. McMahon; Gladys Onambele-Pearson; Christopher I. Morse; Adrian Burden; Keith Winwood
Skeletal muscle possesses the ability to change its structural and mechanical characteristics in response to its external environment (i.e. it is adaptable). The exact nature of such adaptations is manipulated by, amongst other things, the mechanical stimulus provided to the said muscle. Resistance exercise is an example of one such stimulus, and is used in a variety of settings, such as athletic performance, general health and fitness, injury prevention and rehabilitation. It is also now commonplace for resistance exercise to be used to offset the debilitating effects of illness, disease and sarcopenia (the latter being a term used to describe the age-related loss in muscle mass, which is also accompanied by increased fatty tissue infiltration and the ensuing decrement in muscle ‘quality’). The objectives of the resistance exercise protocol therefore, will vary due to the unique nature of each setting, and therefore should be optimised in order to bring about a specific and desirable set of adaptations. Frequent adaptations that are sought from resistance exercise regimes include an increase in muscle cross-sectional area (CSA) and strength [1], alterations to muscle architecture (spatial arrangement of muscle fibres within a muscle [2]), and greater maximal activation of the musculature [3].
Journal of Strength and Conditioning Research | 2018
Aideen McGuinness; Gerard E. McMahon; Shane Malone; Darren Kenna; David Passmore; Kieran Collins
Journal of Strength and Conditioning Research | 2017
Gerard E. McMahon; Rodney Kennedy
Archive | 2016
Rodney Kennedy; Owen Magee; Gerard E. McMahon