Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerard van der Linden is active.

Publication


Featured researches published by Gerard van der Linden.


Frontiers in Plant Science | 2014

Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk

Christos Kissoudis; Clemens C. M. van de Wiel; Richard G. F. Visser; Gerard van der Linden

Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops.


Theoretical and Applied Genetics | 2011

A genome-wide genetic map of NB-LRR disease resistance loci in potato

Erin Bakker; T.J.A. Borm; Pjotr Prins; Edwin van der Vossen; Gerda Uenk; Marjon Arens; Jan de Boer; Herman J. van Eck; Marielle Muskens; Jack H. Vossen; Gerard van der Linden; Roeland C. H. J. van Ham; Rene Klein-Lankhorst; Richard G. F. Visser; Geert Smant; Jaap Bakker; Aska Goverse

Like all plants, potato has evolved a surveillance system consisting of a large array of genes encoding for immune receptors that confer resistance to pathogens and pests. The majority of these so-called resistance or R proteins belong to the super-family that harbour a nucleotide binding and a leucine-rich-repeat domain (NB-LRR). Here, sequence information of the conserved NB domain was used to investigate the genome-wide genetic distribution of the NB-LRR resistance gene loci in potato. We analysed the sequences of 288 unique BAC clones selected using filter hybridisation screening of a BAC library of the diploid potato clone RH89-039-16 (S. tuberosum ssp. tuberosum) and a physical map of this BAC library. This resulted in the identification of 738 partial and full-length NB-LRR sequences. Based on homology of these sequences with known resistance genes, 280 and 448 sequences were classified as TIR-NB-LRR (TNL) and CC-NB-LRR (CNL) sequences, respectively. Genetic mapping revealed the presence of 15 TNL and 32 CNL loci. Thirty-six are novel, while three TNL loci and eight CNL loci are syntenic with previously identified functional resistance genes. The genetic map was complemented with 68 universal CAPS markers and 82 disease resistance trait loci described in literature, providing an excellent template for genetic studies and applied research in potato.


Frontiers in Plant Science | 2016

Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC

Iris Lewandowski; John Clifton-Brown; Luisa M. Trindade; Gerard van der Linden; Kai Uwe Schwarz; Karl Müller-Sämann; Alexander Anisimov; C.L. Chen; Oene Dolstra; Iain S. Donnison; Kerrie Farrar; Simon Fonteyne; Graham Harding; Astley Hastings; Laurie M. Huxley; Yasir Iqbal; Nikolay Khokhlov; Andreas Kiesel; P. Lootens; Heike Meyer; Michal Mos; Hilde Muylle; Chris Nunn; Mensure Özgüven; Isabel Roldán-Ruiz; Heinrich Schüle; Ivan Tarakanov; Tim van der Weijde; Moritz Wagner; Qingguo Xi

This paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing 15 diverse germplasm types in a range of climatic and soil environments across central Europe, Ukraine, Russia, and China. The abiotic stress tolerances of a wider panel of 100 germplasm types to drought, salinity, and low temperatures were measured in the laboratory and a field trial in Belgium. A small selection of germplasm types was evaluated for performance in grasslands on marginal sites in Germany and the UK. The growth traits underlying biomass yield and quality were measured to improve regional estimates of feedstock availability. Several potential high-value bioproducts were identified. The combined results provide recommendations to policymakers, growers and industry. The major technical advances in miscanthus production achieved by OPTIMISC include: (1) demonstration that novel hybrids can out-yield the standard commercially grown genotype Miscanthus x giganteus; (2) characterization of the interactions of physiological growth responses with environmental variation within and between sites; (3) quantification of biomass-quality-relevant traits; (4) abiotic stress tolerances of miscanthus genotypes; (5) selections suitable for production on marginal land; (6) field establishment methods for seeds using plugs; (7) evaluation of harvesting methods; and (8) quantification of energy used in densification (pellet) technologies with a range of hybrids with differences in stem wall properties. End-user needs were addressed by demonstrating the potential of optimizing miscanthus biomass composition for the production of ethanol and biogas as well as for combustion. The costs and life-cycle assessment of seven miscanthus-based value chains, including small- and large-scale heat and power, ethanol, biogas, and insulation material production, revealed GHG-emission- and fossil-energy-saving potentials of up to 30.6 t CO2eq C ha−1y−1 and 429 GJ ha−1y−1, respectively. Transport distance was identified as an important cost factor. Negative carbon mitigation costs of –78€ t−1 CO2eq C were recorded for local biomass use. The OPTIMISC results demonstrate the potential of miscanthus as a crop for marginal sites and provide information and technologies for the commercial implementation of miscanthus-based value chains.


Theoretical and Applied Genetics | 2008

Genetic mapping and transcription analyses of resistance gene loci in potato using NBS profiling

Bart Brugmans; Doret Wouters; Hans van Os; Ronald C. B. Hutten; Gerard van der Linden; Richard G. F. Visser; Herman J. van Eck; Edwin van der Vossen

NBS profiling is a method for the identification of resistance gene analog (RGA) derived fragments. Here we report the use of NBS profiling for the genome wide mapping of RGA loci in potato. NBS profiling analyses on a minimal set of F1 genotypes of the diploid mapping population previously used to generate the ultra dense (UHD) genetic map of potato, allowed us to efficiently map polymorphic RGA fragments relative to 10,000 existing AFLP markers. In total, 34 RGA loci were mapped, of which only 13 contained RGA sequences homologous to RGAs genetically positioned at approximately similar positions in potato or tomato. The remaining RGA loci mapped either at approximate chromosomal regions previously shown to contain RGAs in potato or tomato without sharing homology to these RGAs, or mapped at positions not yet identified as RGA-containing regions. In addition to markers representing RGAs with unknown functions, segregating markers were detected that were closely linked to four functional R genes that segregate in the UHD mapping population. To explore the potential of NBS profiling in RGA transcription analyses, RNA isolated from different tissues was used as template for NBS profiling. Of all the fragments amplified approximately 15% showed putative intensity or absent/present differences between different tissues suggesting putative tissue specific RGA or R gene transcription. Putative absent/present differences between individuals were also found. In addition to being a powerful tool for generating candidate gene markers linked to R gene loci, NBS profiling, when applied to cDNA, can be instrumental in identifying those members of an R gene cluster that are transcribed, and thus putatively functional.


Euphytica | 2015

Combined biotic and abiotic stress resistance in tomato

Christos Kissoudis; Rawnaq Chowdhury; Sjaak van Heusden; Clemens C. M. van de Wiel; Richard Finkers; Richard G. F. Visser; Yuling Bai; Gerard van der Linden

Abiotic and biotic stress factors are the major constrains for the realization of crop yield potential. As climate change progresses, the spread and intensity of abiotic as well as biotic stressors is expected to increase, with increased probability of crops being exposed to both types of stress. Shielding crops from combinatorial stress requires a better understanding of the plant’s response and its genetic architecture. In this study, we evaluated resistance to salt stress, powdery mildew and to both stresses combined in tomato, using the Solanum habrochaites LYC4 introgression line (IL) population. The IL population segregated for both salt stress tolerance and powdery mildew resistance. Using SNP array marker data, QTLs were identified for salt tolerance as well as Na+ and Cl− accumulation. Salt stress increased the susceptibility of the population to powdery mildew in an additive manner. Phenotypic variation for disease resistance was reduced under combined stress as indicated by the coefficient of variation. No correlation was found between disease resistance and Na+ and Cl− accumulation under combined stress Most genetic loci were specific for either salt stress tolerance or powdery mildew resistance. These findings increase our understanding of the genetic regulation of responses to abiotic and biotic stress combinations and can provide leads to more efficiently breeding tomatoes and other crops with a high level of disease resistance while maintaining their performance in combination with abiotic stress.


BMC Plant Biology | 2012

Organ specificity and transcriptional control of metabolic routes revealed by expression QTL profiling of source-sink tissues in a segregating potato population

Bjorn Kloosterman; A. M. Anithakumari; Pierre-Yves Chibon; Marian Oortwijn; Gerard van der Linden; Richard G. F. Visser; Christian W. B. Bachem

BackgroundWith the completion of genome sequences belonging to some of the major crop plants, new challenges arise to utilize this data for crop improvement and increased food security. The field of genetical genomics has the potential to identify genes displaying heritable differential expression associated to important phenotypic traits. Here we describe the identification of expression QTLs (eQTLs) in two different potato tissues of a segregating potato population and query the potato genome sequence to differentiate between cis- and trans-acting eQTLs in relation to gene subfunctionalization.ResultsLeaf and tuber samples were analysed and screened for the presence of conserved and tissue dependent eQTLs. Expression QTLs present in both tissues are predominantly cis-acting whilst for tissue specific QTLs, the percentage of trans-acting QTLs increases. Tissue dependent eQTLs were assigned to functional classes and visualized in metabolic pathways. We identified a potential regulatory network on chromosome 10 involving genes crucial for maintaining circadian rhythms and controlling clock output genes. In addition, we show that the type of genetic material screened and sampling strategy applied, can have a high impact on the output of genetical genomics studies.ConclusionsIdentification of tissue dependent regulatory networks based on mapped differential expression not only gives us insight in tissue dependent gene subfunctionalization but brings new insights into key biological processes and delivers targets for future haplotyping and genetic marker development.


Plant Systematics and Evolution | 2008

The utility of NBS profiling for plant systematics: a first study in tuber-bearing Solanum species

Miqia Wang; Ronald G. van den Berg; Gerard van der Linden; Ben Vosman

Systematic relationships are important criteria for researchers and breeders to select materials. We evaluated a novel molecular technique, nucleotide binding site (NBS) profiling, for its potential in phylogeny reconstruction. NBS profiling produces multiple markers in resistance genes and their analogs (RGAs). Potato (Solanum tuberosum L.) is a crop with a large secondary genepool, which contains many important traits that can be exploited in breeding programs. In this study we used a set of over 100 genebank accessions, representing 49 tuber-bearing wild and cultivated Solanum species. NBS profiling was compared to amplified fragment length polymorphism (AFLP). Cladistic and phenetic analyses showed that the two techniques had similar resolving power and delivered trees with a similar topology. However, the different statistical tests used to demonstrate congruency of the trees were inconclusive. Visual inspection of the trees showed that, especially at the lower level, many accessions grouped together in the same way in both trees; at the higher level, when looking at the more basal nodes, only a few groups were well supported. Again this was similar for both techniques. The observation that higher level groups were poorly supported might be due to the nature of the material and the way the species evolved. The similarity of the NBS and AFLP results indicate that the role of disease resistance in speciation is limited.


Current Opinion in Plant Biology | 2016

Future-proof crops: challenges and strategies for climate resilience improvement.

Christos Kissoudis; Clemens C. M. van de Wiel; Richard G. F. Visser; Gerard van der Linden

Breeding for stress-resilient crops strongly depends on technological and biological advancements that have provided a wealth of information on genetic variants and their contribution to stress tolerance. In the context of the upcoming challenges for agriculture due to climate change, such as prolonged and/or increased stress intensities, CO2 increase and stress combinations, hierarchizing this information is key to accelerating crop improvement towards sustained or even increased productivity. We propose traits with high scalability to yield and crop performance that can be targeted for improvement and provide examples of recent discoveries with potential applicability in breeding. Critical to success is the integrated analysis of the phenotypes of genetic variants across different environmental variables using modelling approaches and high-throughput phenotyping.


Plant Journal | 2018

Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress

Yuling Bai; Christos Kissoudis; Zhe Yan; Richard G. F. Visser; Gerard van der Linden

Crop plants are subjected to a variety of stresses during their lifecycle, including abiotic stress factors such as salinity and biotic stress factors such as pathogens. Plants have developed a multitude of defense and adaptation responses to these stress factors. In the field, different stress factors mostly occur concurrently resulting in a new state of stress, the combined stress. There is evidence that plant resistance to pathogens can be attenuated or enhanced by abiotic stress factors. With stress tolerance research being mostly focused on plant responses to individual stresses, the understanding of a plants ability to adapt to combined stresses is limited. In the last few years, we studied powdery mildew resistance under salt stress conditions in the model crop plant tomato with the aim to understand the requirements to achieve plant resilience to a wider array of combined abiotic and biotic stress combinations. We uncovered specific responses of tomato plants to combined salinity-pathogen stress, which varied with salinity intensity and plant resistance genes. Moreover, hormones, with their complex regulation and cross-talk, were shown to play a key role in the adaptation of tomato plants to the combined stress. In this review, we attempt to understand the complexity of plant responses to abiotic and biotic stress combinations, with a focus on tomato responses (genetic control and cross-talk of signaling pathways) to combined salinity and pathogen stresses. Further, we provide recommendations on how to design novel strategies for breeding crops with a sustained performance under diverse environmental conditions.


Plant Breeding | 2011

Genetic mapping in Lilium: mapping of major genes and quantitative trait loci for several ornamental traits and disease resistances

Arwa Shahin; Paul Arens; Adriaan W. van Heusden; Gerard van der Linden; Martijn van Kaauwen; Nadeem Khan; Henk J. Schouten; W. Eric van de Weg; Richard G. F. Visser; Jaap M. van Tuyl

Collaboration


Dive into the Gerard van der Linden's collaboration.

Top Co-Authors

Avatar

Richard G. F. Visser

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Christos Kissoudis

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Clemens C. M. van de Wiel

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Edwin van der Vossen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Herman J. van Eck

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Martijn van Kaauwen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Oene Dolstra

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Yuling Bai

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

A. M. Anithakumari

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Adriaan W. van Heusden

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge