Gergana M. Deevska
University of Kentucky
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gergana M. Deevska.
Journal of Biological Chemistry | 2009
Gergana M. Deevska; Krassimira A. Rozenova; Natalia V. Giltiay; Melissa A. Chambers; James White; Boris B. Boyanovsky; Jia Wei; Alan Daugherty; Eric J. Smart; Michael B. Reid; Alfred H. Merrill; Mariana Nikolova-Karakashian
Acid sphingomyelinase plays important roles in ceramide homeostasis, which has been proposed to be linked to insulin resistance. To test this association in vivo, acid sphingomyelinase deletion (asm–/–) was transferred to mice lacking the low density lipoprotein receptor (ldlr–/–), and then offsprings were placed on control or modified (enriched in saturated fat and cholesterol) diets for 10 weeks. The modified diet caused hypercholesterolemia in all genotypes; however, in contrast to asm+/+/ldlr–/–, the acid sphingomyelinase-deficient littermates did not display hepatic triacylglyceride accumulation, although sphingomyelin and other sphingolipids were substantially elevated, and the liver was enlarged. asm–/–/ldlr–/– mice on a modified diet did not accumulate body fat and were protected against diet-induced hyperglycemia and insulin resistance. Experiments with hepatocytes revealed that acid sphingomyelinase regulates the partitioning of the major fatty acid in the modified diet, palmitate, into two competitive and inversely related pools, triacylglycerides and sphingolipids, apparently via modulation of serine palmitoyltransferase, a rate-limiting enzyme in de novo sphingolipid synthesis. These studies provide evidence that acid sphingomyelinase activity plays an essential role in the regulation of glucose metabolism by regulating the hepatic accumulation of triacylglycerides and sphingolipids during consumption of a diet rich in saturated fats.
Journal of Biological Chemistry | 2010
Krassimira A. Rozenova; Gergana M. Deevska; Alexander A. Karakashian; Mariana Nikolova-Karakashian
Acid sphingomyelinase (ASMase) has been proposed to mediate lipopolysaccharide (LPS) signaling in various cell types. This study shows that ASMase is a negative regulator of LPS-induced tumor necrosis factor α (TNFα) secretion in macrophages. ASMase-deficient (asm−/−) mice and isolated peritoneal macrophages produce severalfold more TNFα than their wild-type (asm+/+) counterparts when stimulated with LPS, whereas the addition of exogenous ceramides or sphingomyelinase reduces the differences. The underlying mechanism for these effects is not transcriptional but post-translational. The TNFα-converting enzyme (TACE) catalyzes the maturation of the 26-kDa precursor (pro-TNFα) to an active 17-kDa form (soluble (s)TNFα). In mouse peritoneal macrophages, the activity of TACE was the rate-limiting factor regulating TNFα production. A substantial portion of the translated pro-TNFα was not processed to sTNFα; instead, it was rapidly internalized and degraded in the lysosomes. TACE activity was 2–3-fold higher in asm−/− macrophages as compared with asm+/+ macrophages and was suppressed when cells were treated with exogenous ceramide and sphingomyelinase. Indirect immunofluorescence analyses revealed distinct TNFα-positive structures in the close vicinity of the plasma membrane in asm−/− but not in asm+/+ macrophages. asm−/− cells also had a higher number of early endosomal antigen 1-positive early endosomes. Experiments that involved inhibitors of TACE, endocytosis, and lysosomal proteolysis suggest that in the asm−/− cells a significant portion of pro-TNFα was sequestered within the early endosomes, and instead of undergoing lysosomal proteolysis, it was recycled to the plasma membrane and processed to sTNFα.
European Journal of Heart Failure | 2014
Hyacinth M. Empinado; Gergana M. Deevska; Mariana Nikolova-Karakashian; Jeung-Ki Yoo; Demetra D. Christou; Leonardo F. Ferreira
Chronic heart failure (CHF) causes inspiratory (diaphragm) muscle weakness and fatigue that contributes to dyspnoea and limited physical capacity in patients. However, the mechanisms that lead to diaphragm dysfunction in CHF remain poorly understood. Cytokines and angiotensin II are elevated in CHF and stimulate the activity of the enzyme sphingomyelinase (SMase) and accumulation of its reaction product ceramide. In the diaphragm, SMase or ceramide exposure in vitro causes weakness and fatigue. Thus, elevated SMase activity and ceramide content have been proposed as mediators of diaphragm dysfunction in CHF. In the present study, we tested the hypotheses that diaphragm dysfunction was accompanied by increases in diaphragm SMase activity and ceramide content.
Bioscience Reports | 2012
Gergana M. Deevska; Manjula Sunkara; Andrew J. Morris; Mariana Nikolova-Karakashian
The propensity of LDLs (low-density lipoproteins) for aggregation and/or oxidation has been linked to their sphingolipid content, specifically the levels of SM (sphingomyelin) and ceramide. To investigate this association in vivo, ldlr (LDL receptor)-null mice (ldlr−/−) were fed on a modified (atherogenic) diet containing saturated fats and cholesterol. The diet led to significantly elevated SM content in all serum lipoproteins. In contrast, ceramide increased only in the LDL particles. MS-based analyses of the lipid acyl chain composition revealed a marked elevation in C16:0 fatty acid in SM and ceramide, consistent with the prevalence of palmitic acid in the modified diet. The diet also led to increased activity of the S-SMase [secretory SMase (sphingomyelinase)], a protein that is generated by ASMase (acid SMase) and acts on serum LDL. An increased macrophage secretion seemed to be responsible for the elevated S-SMase activity. ASMase-deficient mice (asm−/−/ldlr−/−) lacked S-SMase activity and were protected from diet-induced elevation in LDL ceramide. LDL from asm−/−/ldlr−/− mice fed on the modified diet were less aggregated and oxidized than LDL from asm+/+/ldlr−/− mice. When tested in vitro, the propensity for aggregation was dependent on the SM level: only LDL from animals on modified diet that have high SM content aggregated when treated with recombinant S-SMase. In conclusion, LDL-SM content and S-SMase activity are up-regulated in mice fed on an atherogenic diet. S-SMase mediates diet-induced changes in LDL ceramide content and aggregation. S-SMase effectiveness in inducing aggregation is dependent on diet-induced enrichment of LDL with SM, possibly through increased hepatic synthesis.
Redox biology | 2014
Jennifer S. Moylan; Jeffrey D. Smith; Erin M. Wolf Horrell; Julie B. McLean; Gergana M. Deevska; Mark R. Bonnell; Mariana Nikolova-Karakashian; Michael B. Reid
Aims Sphingolipid and oxidant signaling affect glucose uptake, atrophy, and force production of skeletal muscle similarly and both are stimulated by tumor necrosis factor (TNF), suggesting a connection between systems. Sphingolipid signaling is initiated by neutral sphingomyelinase (nSMase), a family of agonist-activated effector enzymes. Northern blot analyses suggest that nSMase3 may be a striated muscle-specific nSMase. The present study tested the hypothesis that nSMase3 protein is expressed in skeletal muscle and functions to regulate TNF-stimulated oxidant production. Results We demonstrate constitutive nSMase activity in skeletal muscles of healthy mice and humans and in differentiated C2C12 myotubes. nSMase3 (Smpd4 gene) mRNA is highly expressed in muscle. An nSMase3 protein doublet (88 and 85 kD) is derived from alternative mRNA splicing of exon 11. The proteins partition differently. The full-length 88 kD isoform (nSMase3a) fractionates with membrane proteins that are resistant to detergent extraction; the 85 kD isoform lacking exon 11 (nSMase3b) is more readily extracted and fractionates with detergent soluble membrane proteins; neither variant is detected in the cytosol. By immunofluorescence microscopy, nSMase3 resides in both internal and sarcolemmal membranes. Finally, myotube nSMase activity and cytosolic oxidant activity are stimulated by TNF. Both if these responses are inhibited by nSMase3 knockdown. Innovation These findings identify nSMase3 as an intermediate that links TNF receptor activation, sphingolipid signaling, and skeletal muscle oxidant production. Conclusion Our data show that nSMase3 acts as a signaling nSMase in skeletal muscle that is essential for TNF-stimulated oxidant activity.
Neuroscience | 2015
Lixin Zhang; R.H. Kline; Gergana M. Deevska; Mariana Nikolova-Karakashian; Karin N. Westlund
The pathogenesis of pain in chronic pancreatitis is poorly understood, and its treatment can be a major clinical challenge. Surgical and other invasive methods have variable outcomes that can be unsatisfactory. Therefore, there is a great need for further discovery of the pathogenesis of pancreatitis pain and new therapeutic targets. Human and animal studies indicate a critical role for oxidative stress and activation of transient receptor potential (TRP) cation channel subfamily members TRPV1 and TRPA1 on pancreatic nociceptors in sensitization mechanisms that result in pain. However, the in vivo role of transient receptor potential cation channel subfamily V member 4 (TRPV4) in chronic pancreatitis needs further evaluation. The present study characterized a rat alcohol/high fat diet (AHF)-induced chronic pancreatitis model with hypersensitivity, fibrotic pathology, and fat vacuolization consistent with the clinical syndrome. The rats with AHF-induced pancreatitis develop referred visceral pain-like behaviors, i.e. decreased hindpaw mechanical thresholds and shortened abdominal and hindpaw withdrawal latency to heat. In this study, oxidative stress was characterized as well as the role of TRPV4 in chronic visceral hypersensitivity. Lipid peroxidase and oxidative stress were indicated by increased plasma thiobarbituric acid reactive substances (TBARS) and diminished pancreatic manganese superoxide dismutase (MnSOD). The secondary sensitization associated with AHF-induced pancreatitis was effectively alleviated by the TRPV4 antagonist, HC 067047. Similarity of the results to those with the peripherally restricted μ-opiate receptor agonist, loperamide, suggested TRPV4 channel activated peripheral sensitization. This study using a reliable model that provides pre-clinical correlates of human chronic pancreatitis provides further evidence that TRPV4 channel is a potential therapeutic target for treatment of pancreatitis pain.
Journal of Biological Chemistry | 2017
Gergana M. Deevska; P. Patrick Dotson; Alexander A. Karakashian; Giorgis Isaac; M Wrona; Samuel B. Kelly; Alfred H. Merrill; Mariana Nikolova-Karakashian
This study investigates the consequences of elevating sphingomyelin synthase 1 (SMS1) activity, which generates the main mammalian sphingolipid, sphingomyelin. HepG2 cells stably transfected with SMS1 (HepG2-SMS1) exhibit elevated enzyme activity in vitro and increased sphingomyelin content (mainly C22:0- and C24:0-sphingomyelin) but lower hexosylceramide (Hex-Cer) levels. HepG2-SMS1 cells have fewer triacylglycerols than controls but similar diacylglycerol acyltransferase activity, triacylglycerol secretion, and mitochondrial function. Treatment with 1 mm palmitate increases de novo ceramide synthesis in both cell lines to a similar degree, causing accumulation of C16:0-ceramide (and some C18:0-, C20:0-, and C22:0-ceramides) as well as C16:0- and C18:0-Hex-Cers. In these experiments, the palmitic acid is delivered as a complex with delipidated BSA (2:1, mol/mol) and does not induce significant lipotoxicity. Based on precursor labeling, the flux through SM synthase also increases, which is exacerbated in HepG2-SMS1 cells. In contrast, palmitate-induced lipid droplet formation is significantly reduced in HepG2-SMS1 cells. [14C]Choline and [3H]palmitate tracking shows that SMS1 overexpression apparently affects the partitioning of palmitate-enriched diacylglycerol between the phosphatidylcholine and triacylglycerol pathways, to the benefit of the former. Furthermore, triacylglycerols from HepG2-SMS1 cells are enriched in polyunsaturated fatty acids, which is indicative of active remodeling. Together, these results delineate novel metabolic interactions between glycerolipids and sphingolipids.
Journal of Lipid Research | 2014
Gergana M. Deevska; Manjula Sunkara; Claudia Karakashian; Benjamin Peppers; Andrew J. Morris; Mariana Nikolova-Karakashian
In hepatocytes, aging-associated decline in GSH has been linked to activation of neutral SMase (nSMase), accumulation of bioactive ceramide, and inflammation. In this study, we seek to test whether dietary supplementation with the cysteine precursor, L-2-oxothiazolidine-4-carboxylic acid (OTC), would correct the aging-associated differences in hepatic GSH, nSMase, and ceramide. Young and aged mice were placed on a diet that either lacked sulfur-containing amino acids (SAAs) or had 0.5% OTC for 4 weeks. Mice fed standard chow were used as an additional control. SAA-deficient mice exhibited significant aging-associated differences in hepatic GSH, GSH/GSSG, ceramide, and nSMase. C24:1 ceramide, the major ceramide species in liver, was affected the most by aging, followed by the less abundant C16:0 ceramide. OTC supplementation eliminated the aging-associated differences in hepatic GSH and GSH/GSSG ratio. Surprisingly, however, instead of decreasing, the nSMase activity and ceramide increased in the OTC-fed mice irrespective of their age. These effects were due to elevated nSMase-2 mRNA and protein and appeared to be direct. Similar increases were seen in HepG2 cells following treatment with OTC. The OTC-fed aged mice also exhibited hepatic steatosis and triacylglyceride accumulation. These results suggest that OTC is a potent stimulant of nSMase-2 expression and that there may be unanticipated complications of OTC supplementation.
Biochimie | 2011
Gergana M. Deevska; Mariana Nikolova-Karakashian
Pregnancy Hypertension: An International Journal of Women's Cardiovascular Health | 2016
Aneta Dobierzewska; Jessica Astorga; Anja Limmer; Macarena Palominos; Gergana M. Deevska; Mariana Nikolova-Karakashian; Sebastian E. Illanes