Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerhard Hannig is active.

Publication


Featured researches published by Gerhard Hannig.


Journal of Pharmacology and Experimental Therapeutics | 2013

Pharmacologic Properties, Metabolism, and Disposition of Linaclotide, a Novel Therapeutic Peptide Approved for the Treatment of Irritable Bowel Syndrome with Constipation and Chronic Idiopathic Constipation

Robert W. Busby; Marco Kessler; Wilmin Bartolini; Alexander P. Bryant; Gerhard Hannig; Carolyn S. Higgins; Robert Solinga; Jenny Tobin; Caroline B. Kurtz; Mark G. Currie

Linaclotide, a potent guanylate cyclase C agonist, is a therapeutic peptide approved in the United States for the treatment of irritable bowel syndrome with constipation and chronic idiopathic constipation. We present for the first time the metabolism, degradation, and disposition of linaclotide in animals and humans. We examined the metabolic stability of linaclotide in conditions that mimic the gastrointestinal tract and characterized the metabolite MM-419447 (CCEYCCNPACTGC), which contributes to the pharmacologic effects of linaclotide. Systemic exposure to these active peptides is low in rats and humans, and the low systemic and portal vein concentrations of linaclotide and MM-419447 observed in the rat confirmed both peptides are minimally absorbed after oral administration. Linaclotide is stable in the acidic environment of the stomach and is converted to MM-419447 in the small intestine. The disulfide bonds of both peptides are reduced in the small intestine, where they are subsequently proteolyzed and degraded. After oral administration of linaclotide, <1% of the dose was excreted as active peptide in rat feces and a mean of 3–5% in human feces; in both cases MM-419447 was the predominant peptide recovered. MM-419447 exhibits high-affinity binding in vitro to T84 cells, resulting in a significant, concentration-dependent accumulation of intracellular cyclic guanosine-3′,5′-monophosphate (cGMP). In rat models of gastrointestinal function, orally dosed MM-419447 significantly increased fluid secretion into small intestinal loops, increased intraluminal cGMP, and caused a dose-dependent acceleration in gastrointestinal transit. These results demonstrate the importance of the active metabolite in contributing to linaclotide’s pharmacology.


Journal of Cellular Biochemistry | 2005

Methionine aminopeptidases type I and type II are essential to control cell proliferation.

Sylvie G. Bernier; Nazbeh Taghizadeh; Charles D. Thompson; William F. Westlin; Gerhard Hannig

The dependence of cell growth on methionine aminopeptidase (MetAP) function in bacteria and yeast is firmly established. Here we report experimental evidence that the control of cell proliferation in mammalian cells is directly linked and strictly dependent on the activity of both MetAP‐1 and MetAP‐2. The targeted downregulation of either methionine aminopeptidase MetAP‐1 or MetAP‐2 protein expression by small interfering RNA (siRNA) significantly inhibited the proliferation of human umbilical vein endothelial cells (HUVEC) (70%–80%), while A549 human lung carcinoma cell proliferation was less inhibited (20%–30%). The cellular levels of MetAP‐2 enzyme were measured after MetAP‐2 siRNA treatment and found to decrease over time from 4 to 96 h, while rapid and complete depletion of MetAP‐2 enzyme activity was observed after 4 h treatment with two pharmacological inhibitors of MetAP‐2, PPI‐2458 and fumagillin. When HUVEC and A549 cells were treated simultaneously with MetAP‐2 siRNA and PPI‐2458, or fumagillin, which irreversibly inhibit MetAP‐2 enzyme activity, no additive effect on maximum growth inhibition was observed. This strongly suggests that MetAP‐2 is the single critical cellular enzyme affected by either MetAP‐2 targeting approach. Most strikingly, despite their significantly different sensitivity to growth inhibition after targeting of either MetAP‐1 or MetAP‐2, HUVEC, and A549 cells, which were made functionally deficient in both MetAP‐1 and MetAP‐2 were completely or almost completely inhibited in their growth, respectively. This closely resembled the observed growth inhibition in genetically double‐deficient map1map2 yeast strains. These results suggest that MetAP‐1 and MetAP‐2 have essential functions in the control of mammalian cell proliferation and that MetAP‐dependent growth control is evolutionarily highly conserved.


Pain | 2013

Gastrointestinal pain: unraveling a novel endogenous pathway through uroguanylin/guanylate cyclase-C/cGMP activation.

Inmaculada Silos-Santiago; Gerhard Hannig; Helene Eutamene; Elena E. Ustinova; Sylvie G. Bernier; Pei Ge; Christopher Graul; Sarah Jacobson; Hong Jin; Elaine Liong; Marco Kessler; Tammi Reza; Samuel Rivers; Courtney Shea; Boris Tchernychev; Alexander P. Bryant; Caroline B. Kurtz; Lionel Bueno; Michael A. Pezzone; Mark G. Currie

Summary Uroguanylin activation of the guanylate cyclase‐C/cyclic guanosine monophosphate pathway elicits analgesic effects in animal models of colonic hypersensitivity, unraveling a novel pathway to treat abdominal pain. ABSTRACT The natural hormone uroguanylin regulates intestinal fluid homeostasis and bowel function through activation of guanylate cyclase‐C (GC‐C), resulting in increased intracellular cyclic guanosine‐3′,5′‐monophosphate (cGMP). We report the effects of uroguanylin‐mediated activation of the GC‐C/cGMP pathway in vitro on extracellular cGMP transport and in vivo in rat models of inflammation‐ and stress‐induced visceral hypersensitivity. In vitro exposure of intestinal Caco‐2 cells to uroguanylin stimulated bidirectional, active extracellular transport of cGMP into luminal and basolateral spaces. cGMP transport was significantly and concentration dependently decreased by probenecid, an inhibitor of cGMP efflux pumps. In ex vivo Ussing chamber assays, uroguanylin stimulated cGMP secretion from the basolateral side of rat colonic epithelium into the submucosal space. In a rat model of trinitrobenzene sulfonic acid (TNBS)‐induced visceral hypersensitivity, orally administered uroguanylin increased colonic thresholds required to elicit abdominal contractions in response to colorectal distension (CRD). Oral administration of cGMP mimicked the antihyperalgesic effects of uroguanylin, significantly decreasing TNBS‐ and restraint stress–induced visceromotor response to graded CRD in rats. The antihyperalgesic effects of cGMP were not associated with increased colonic spasmolytic activity, but were linked to significantly decreased firing rates of TNBS‐sensitized colonic afferents in rats in response to mechanical stimuli. In conclusion, these data suggest that the continuous activation of the GC‐C/cGMP pathway along the intestinal tract by the endogenous hormones guanylin and uroguanylin results in significant reduction of gastrointestinal pain. Extracellular cGMP produced on activation of GC‐C is the primary mediator in this process via modulation of sensory afferent activity.


Journal of Medicinal Chemistry | 2009

Carbamate Analogues of Fumagillin as Potent, Targeted Inhibitors of Methionine Aminopeptidase-2

Christopher C. Arico-Muendel; Dennis Benjamin; Teresa M. Caiazzo; Paolo A. Centrella; Brooke D. Contonio; Charles M. Cook; Elisabeth Doyle; Gerhard Hannig; Matthew T. Labenski; Lily L. Searle; Kenneth Lind; Barry Morgan; Gary E. Olson; Christopher L. Paradise; Christopher Self; Steven R. Skinner; Barbara C. Sluboski; Jennifer L. Svendsen; Charles D. Thompson; William F. Westlin; Kerry White

Inhibition of methionine aminopeptidase-2 (MetAP2) represents a novel approach to antiangiogenic therapy. We describe the synthesis and activity of fumagillin analogues that address the pharmacokinetic and safety liabilities of earlier candidates in this compound class. Two-step elaboration of fumagillol with amines yielded a diverse series of carbamates at C6 of the cyclohexane spiroepoxide. The most potent of these compounds exhibited subnanomolar inhibition of cell proliferation in HUVEC and BAEC assays. Although a range of functionalities were tolerated at this position, alpha-trisubstituted amines possessed markedly decreased inhibitory activity, and this could be rationalized by modeling based on the known fumagillin-MetAP2 crystal structure. The lead compound resulting from these studies, (3R,4S,5S,6R)-5-methoxy-4-((2R,3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl)-1-oxaspiro[2.5]octan-6-yl (R)-1-amino-3-methyl-1-oxobutan-2-ylcarbamate, (PPI-2458), demonstrated an improved pharmacokinetic profile relative to the earlier clinical candidate TNP-470, and has advanced into phase I clinical studies in non-Hodgkins lymphoma and solid cancers.


Frontiers in Molecular Neuroscience | 2014

Guanylate cyclase-C/cGMP: an emerging pathway in the regulation of visceral pain

Gerhard Hannig; Boris Tchernychev; Caroline B. Kurtz; Alexander P. Bryant; Mark G. Currie; Inmaculada Silos-Santiago

Activation of guanylate cyclase-C (GC-C) expressed predominantly on intestinal epithelial cells by guanylin, uroguanylin or the closely related GC-C agonist peptide, linaclotide, stimulates generation, and release of cyclic guanosine-3′,5′-monophosphate (cGMP). Evidence that the visceral analgesic effects of linaclotide are mediated by a novel, GC-C-dependent peripheral sensory mechanism was first demonstrated in animal models of visceral pain. Subsequent studies with uroguanylin or linaclotide have confirmed the activation of a GC-C/cGMP pathway leading to increased submucosal cGMP mediated by cGMP efflux pumps, which modulates intestinal nociceptor function resulting in peripheral analgesia. These effects can be reproduced by the addition of exogenous cGMP and support a role for GC-C/cGMP signaling in the regulation of visceral sensation, a physiological function that has not previously been linked to the GC-C/cGMP pathway. Notably, targeting the GC-C/cGMP pathway for treatment of gastrointestinal pain and abdominal sensory symptoms has now been validated in the clinic. In 2012, linaclotide was approved in the United States and European Union for the treatment of adult patients with irritable bowel syndrome with constipation.


Clinical Cancer Research | 2006

A Novel Methionine Aminopeptidase-2 Inhibitor, PPI-2458, Inhibits Non–Hodgkin's Lymphoma Cell Proliferation In vitro and In vivo

Andrew C. Cooper; Russell Karp; Edward Clark; Nazbeh Taghizadeh; Jennifer G. Hoyt; Matthew T. Labenski; Michael J. Murray; Gerhard Hannig; William F. Westlin; Charles D. Thompson

Purpose: Fumagillin and related compounds have potent antiproliferative activity through inhibition of methionine aminopeptidase-2 (MetAP-2). It has recently been reported that MetAP-2 is highly expressed in germinal center B cells and germinal center–derived non–Hodgkins lymphomas (NHL), suggesting an important role for MetAP-2 in proliferating B cells. Therefore, we determined the importance of MetAP-2 in normal and transformed germinal center B cells by evaluating the effects of MetAP-2 inhibition on the form and function of germinal centers and germinal center–derived NHL cells. Experimental Design: To examine the activity of PPI-2458 on germinal center morphology, spleen sections from cynomolgus monkeys treated with oral PPI-2458 were analyzed. Antiproliferative activity of PPI-2458 was assessed on germinal center–derived NHL lines in culture. A MetAP-2 pharmacodynamic assay was used to determine cellular MetAP-2 inhibition following PPI-2458 treatment. Finally, inhibition of MetAP-2 and proliferation by PPI-2458 was examined in the human SR NHL line in culture and in implanted xenografts. Results: Oral PPI-2458 caused a reduction in germinal center size and number in lymphoid tissues from treated animals. PPI-2458 potently inhibited growth (GI50 = 0.2-1.9 nmol/L) of several NHL lines in a manner that correlated with MetAP-2 inhibition. Moreover, orally administered PPI-2458 significantly inhibited SR tumor growth, which correlated with inhibition of tumor MetAP-2 (>85% at 100 mg/kg) in mice. Conclusions: These results show the potent antiproliferative activity of PPI-2458 on NHL lines in vitro and oral antitumor activity in vivo and suggest the therapeutic potential of PPI-2458 as a novel agent for treatment of NHL should be evaluated in the clinical setting.


Bioorganic & Medicinal Chemistry Letters | 2009

Synthesis and evaluation of alkoxy-phenylamides and alkoxy-phenylimidazoles as potent sphingosine-1-phosphate receptor subtype-1 agonists.

Ghotas Evindar; Sylvie G. Bernier; Malcolm J. Kavarana; Elisabeth Doyle; Jeanine Lorusso; Michael Kelley; Keith Halley; Amy Hutchings; Albion D. Wright; Ashis K. Saha; Gerhard Hannig; Barry Morgan; William F. Westlin

In the design of potent and selective sphingosine-1-phosphate receptor agonists, we were able to identify two series of molecules based on phenylamide and phenylimidazole analogs of FTY-720. Several designed molecules in these scaffolds have demonstrated selectivity for S1P receptor subtype 1 versus 3 and excellent in vivo activity in mouse. Two molecules PPI-4621 (4b) and PPI-4691 (10a), demonstrated dose responsive lymphopenia, when administered orally.


Investigative Ophthalmology & Visual Science | 2016

The Soluble Guanylate Cyclase Stimulator IWP-953 Increases Conventional Outflow Facility in Mouse Eyes.

Pei Ge; Iris Navarro; Marco Kessler; Sylvie G. Bernier; Nicholas Robert Perl; Renee Sarno; Jaime Masferrer; Gerhard Hannig; W. Daniel Stamer

Purpose The nitric oxide (NO)–cyclic guanosine-3′,5′-monophosphate (cGMP) pathway regulates aqueous humor outflow and therefore, intraocular pressure. We investigated the pharmacologic effects of the soluble guanylate cyclase (sGC) stimulator IWP-953 on primary human trabecular meshwork (HTM) cells and conventional outflow facility in mouse eyes. Methods Cyclic GMP levels were determined in vitro in HEK-293 cells and four HTM cell strains (HTM120/HTM123: predominantly myofibroblast-like phenotype, HTM130/HTM141: predominantly endothelial-like phenotype), and in HTM cell culture supernatants. Conventional outflow facility was measured following intracameral injection of IWP-953 or DETA-NO using a computerized pressure-controlled perfusion system in enucleated mouse eyes ex vivo. Results IWP-953 markedly stimulated cGMP production in HEK-293 cells in the presence and absence of DETA-NO (half maximal effective concentrations: 17 nM, 9.5 μM). Similarly, IWP-953 stimulated cGMP production in myofibroblast-like HTM120 and HTM123 cells, an effect that was greatly amplified by the presence of DETA-NO. In contrast, IWP-953 stimulation of cGMP production in endothelial-like HTM130 and HTM141 cells was observed, but was markedly less prominent than in HTM120 and HTM123 cells. Notably, cGMP was found in all HTM culture supernatants, following IWP-953/DETA-NO stimulation. In paired enucleated mouse eyes, IWP-953 at 10, 30, 60, and 100 μM concentration-dependently increased outflow facility. This effect (89.5%) was maximal at 100 μM (P = 0.002) and in magnitude comparable to DETA-NO at 100 μM (97.5% increase, P = 0.030). Conclusions These data indicate that IWP-953, via modulation of the sGC–cGMP pathway, increases aqueous outflow facility in mouse eyes, suggesting therapeutic potential for sGC stimulators as novel ocular hypotensive drugs.


Journal of Pharmacology and Experimental Therapeutics | 2015

MRP4 Modulation of the Guanylate Cyclase-C/cGMP Pathway: Effects on Linaclotide-Induced Electrolyte Secretion and cGMP Efflux

Boris Tchernychev; Pei Ge; Marco Kessler; Robert Solinga; Derek Wachtel; Jenny Tobin; Sara Thomas; Craig E. Lunte; Angelika Fretzen; Gerhard Hannig; Alexander P. Bryant; Caroline B. Kurtz; Mark G. Currie; Inmaculada Silos-Santiago

MRP4 mediates the efflux of cGMP and cAMP and acts as an important regulator of these secondary messengers, thereby affecting signaling events mediated by cGMP and cAMP. Immunofluorescence staining showed high MRP4 expression localized predominantly in the apical membrane of rat colonic epithelium. In vitro studies were performed using a rat colonic mucosal layer mounted in an Ussing chamber. Linaclotide activation of the guanylate cyclase-C (GC-C)/cGMP pathway induced a concentration-dependent increase in transepithelial ion current [short-circuit current (Isc)] across rat colonic mucosa (EC50: 9.2 nM). Pretreatment of colonic mucosa with the specific MRP4 inhibitor MK571 potentiated linaclotide-induced electrolyte secretion and augmented linaclotide-stimulated intracellular cGMP accumulation. Notably, pretreatment with the phosphodiesterase 5 inhibitor sildenafil increased basal Isc, but had no amplifying effect on linaclotide-induced Isc. MRP4 inhibition selectively affected the activation phase, but not the deactivation phase, of linaclotide. In contrast, incubation with a GC-C/Fc chimera binding to linaclotide abrogated linaclotide-induced Isc, returning to baseline. Furthermore, linaclotide activation of GC-C induced cGMP secretion from the apical and basolateral membranes of colonic epithelium. MRP4 inhibition blocked cGMP efflux from the apical membrane, but not the basolateral membrane. These data reveal a novel, previously unrecognized mechanism that functionally couples GC-C-induced luminal electrolyte transport and cGMP secretion to spatially restricted, compartmentalized regulation by MRP4 at the apical membrane of intestinal epithelium. These findings have important implications for gastrointestinal disorders with symptoms associated with dysregulated fluid homeostasis, such as irritable bowel syndrome with constipation, chronic idiopathic constipation, and secretory diarrhea.


Bioorganic & Medicinal Chemistry Letters | 2009

Synthesis and evaluation of arylalkoxy- and biarylalkoxy-phenylamide and phenylimidazoles as potent and selective sphingosine-1-phosphate receptor subtype-1 agonists.

Ghotas Evindar; Alexander L. Satz; Sylvie G. Bernier; Malcolm J. Kavarana; Elisabeth Doyle; Jeanine Lorusso; Nazbeh Taghizadeh; Keith Halley; Amy Hutchings; Michael Kelley; Albion D. Wright; Ashis K. Saha; Gerhard Hannig; Barry Morgan; William F. Westlin

In pursuit of potent and selective sphingosine-1-phosphate receptor agonists, we have utilized previously reported phenylamide and phenylimidazole scaffolds to explore extensive side-chain modifications to generate new molecular entities. A number of designed molecules demonstrate good selectivity and excellent in vitro and in vivo potency in both mouse and rat models. Oral administration of the lead molecule 11c (PPI-4667) demonstrated potent and dose-responsive lymphopenia.

Collaboration


Dive into the Gerhard Hannig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pei Ge

Ironwood Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Kessler

Ironwood Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark G. Currie

Ironwood Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge