Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerhard Larcher is active.

Publication


Featured researches published by Gerhard Larcher.


Journal of the American Statistical Association | 1998

Random and quasi-random point sets

Peter Hellekalek; Gerhard Larcher; József Beck

From Probabilistic Diophantine Approximation to Quadratic Fields.- 1 Part I: Super Irregularity.- 2 Part II: Probabilistic Diophantine Approximation.- 2.1 Local Case: Inhomogeneous Pell Inequalities - Hyperbolas.- 2.2 Beyond Quadratic Irrationals.- 2.3 Global Case: Lattice Points in Tilted Rectangles.- 2.4 Simultaneous Case.- 3 Part III: Quadratic Fields and Continued Fractions.- 3.1 Cesaro Mean of % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaaeabqaamaacmaabaGaamOBaiabeg7aH9aadaahaaWcbeqaa8qa % caaIXaGaai4laiaaikdaaaaakiaawUhacaGL9baaaSqabeqaniabgg % HiLdaaaa!3F6B!


Monatshefte für Mathematik | 1996

Digital Nets and Sequences Constructed over Finite Rings and Their Application to Quasi-Monte Carlo Integration.

Gerhard Larcher; Harald Niederreiter; Wolfgang Ch. Schmid


Mathematics of Computation | 1994

On the numerical integration of Walsh series by number-theoretic methods

Gerhard Larcher

\sum {\left\{ {n{\alpha ^{1/2}}} \right\}}


SIAM Journal on Numerical Analysis | 1996

Optimal Polynomials for ( t,m,s )-Nets and Numerical Integration of Multivariate Walsh Series

Gerhard Larcher; A. Lauss; Harald Niederreiter; W.Ch. Schmid


International Journal of Number Theory | 2009

Distribution Properties of Generalized van der Corput-Halton Sequences and their Subsequences

Roswitha Hofer; Peter Kritzer; Gerhard Larcher; Friedrich Pillichshammer

and Quadratic Fields.- 3.2 Hardy-Littlewood Lemma 14.- 4 Part IV: Class Number One Problems.- 4.1 An Attempt to Reduce the Yokois Conjecture to a Finite Amount of Computation.- 5 Part V: Cesaro Mean of % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqaaaaaaaaaWdbe % aadaaeqaWdaeaapeWaaeWaa8aabaWdbmaacmaapaqaa8qacaWGUbGa % eqySdegacaGL7bGaayzFaaGaeyOeI0IaaGymaiaac+cacaaIYaaaca % GLOaGaayzkaaaal8aabaWdbiaad6gaaeqaniabggHiLdaaaa!42C9!


Mathematics of Computation | 2011

Exponential convergence and tractability of multivariate integration for Korobov spaces

Josef Dick; Gerhard Larcher; Friedrich Pillichshammer; Henryk Wozniakowski


Proceedings of the American Mathematical Society | 1988

A convergence problem connected with continued fractions

Gerhard Larcher

\sum\nolimits_n {\left( {\left\{ {n\alpha } \right\} - 1/2} \right)}


Transactions of the American Mathematical Society | 1995

Generalized

Gerhard Larcher; Harald Niederreiter


Monatshefte für Mathematik | 1986

(t,s)

Gerhard Larcher

.- 6 References.- On the Assessment of Random and Quasi-Random Point Sets.- 1 Introduction.- 2 Chapter for the Practitioner.- 2.1 Assessing RNGs.- 2.2 Correlation Analysis for RNGs I.- 2.3 Correlation Analysis for RNGs II.- 2.4 Theory vs. Practice I: Leap-Frog Streams.- 2.5 Theory vs. Practice II: Parallel Monte Carlo Integration.- 2.6 Assessing LDPs.- 2.7 Good Lattice Points.- 2.8 GLPs vs. (tms)-Nets.- 2.9 Conclusion.- 3 Mathematical Preliminaries.- 3.1 Haar and Walsh Series.- 3.2 Integration Lattices.- 4 Uniform Distribution Modulo One.- 4.1 The Definition of Uniformly Distributed Sequences.- 4.2 Weyl Sums and Weyls Criterion.- 4.3 Remarks.- 5 The Spectral Test.- 5.1 Definition.- 5.2 Properties.- 5.3 Examples.- 5.4 Geometric Interpretation.- 5.5 Remarks.- 6 The Weighted Spectral Test.- 6.1 Definition.- 6.2 Examples and Properties.- 6.3 Remarks.- 7 Discrepancy.- 7.1 Definition.- 7.2 The Inequality of Erdos-Turan-Koksma.- 7.3 Remarks.- 8 Summary.- 9 Acknowledgements.- 10 References.- Lattice Rules: How Well Do They Measure Up?.- 1 Introduction.- 2 Some Basic Properties of Lattice Rules.- 3 A General Approach to Worst-Case and Average-Case Error Analysis.- 3.1 Worst-Case Quadrature Error for Reproducing Kernel Hilbert Spaces.- 3.2 A More General Worst-Case Quadrature Error Analysis.- 3.3 Average-Case Quadrature Error Analysis.- 4 Examples of Other Discrepancies.- 4.1 The ANOVA Decomposition.- 4.2 A Generalization ofP?(L) with Weights.- 4.3 The Periodic Bernoulli Discrepancy - Another Generalization ofP?(L).- 4.4 The Non-Periodic Bernoulli Discrepancy.- 4.5 The Star Discrepancy.- 4.6 The Unanchored Discrepancy.- 4.7 The Wrap-Around Discrepancy.- 4.8 The Symmetric Discrepancy.- 5 Shift-Invariant Kernels and Discrepancies.- 6 Discrepancy Bounds.- 6.1 Upper Bounds forP?(L).- 6.2 A Lower Bound onDF,?,1(P).- 6.3 Quadrature Rules with Different Weights.- 6.4 Copy Rules.- 7 Discrepancies of Integration Lattices and Nets.- 7.1 The Expected Discrepancy of Randomized (0ms)-Nets.- 7 2 Infinite Sequences of Embedded Lattices.- 8 Tractability of High Dimensional Quadrature.- 8.1 Quadrature in Arbitrarily High Dimensions.- 8.2 The Effective Dimension of an Integrand.- 9 Discussion and Conclusion.- 10 References.- Digital Point Sets: Analysis and Application.- 1 Introduction.- 2 The Concept and Basic Properties of Digital Point Sets.- 3 Discrepancy Bounds for Digital Point Sets.- 4 Special Classes of Digital Point Sets and Quality Bounds.- 5 Digital Sequences Based on Formal Laurent Series and Non-Archimedean Diophantine Approximation.- 6 Analysis of Pseudo-Random-Number Generators by Digital Nets.- 7 The Digital Lattice Rule.- 8 Outlook and Open Research Topics.- 9 References.- Random Number Generators: Selection Criteria and Testing.- 1 Introduction.- 2 Design Principles and Figures of Merit.- 2.1 A Roulette Wheel.- 2.2 Sampling from ?t.- 2.3 The Lattice Structure of MRGs.- 2.4 Equidistribution for Regular Partitions in Cubic Boxes.- 2.5 Other Measures of Divergence.- 3 Empirical Statistical Tests.- 3.1 What are the Good Tests?.- 3.2 Two-Level Tests.- 3.3 Collections of Empirical Tests.- 4 Examples of Empirical Tests.- 4.1 Serial Tests of Equidistribution.- 4.2 Tests Based on Close Points in Space.- 5 Collections of Small RNGs.- 5.1 Small Linear Congruential Generators.- 5.2 Explicit Inversive Congruential Generators.- 5.3 Compound Cubic Congruential Generators.- 6 Systematic Testing for Small RNGs.- 6.1 Serial Tests of Equidistribution for LCGs.- 6.2 Serial Tests of Equidistribution for Nonlinear Generators.- 6.3 A Summary of the Serial Tests Results.- 6.4 Close-Pairs Tests for LCGs.- 6.5 Close-Pairs Tests for Nonlinear Generators.- 6.6 A Summary of the Close-Pairs Tests Results.- 7 How Do Real-Life Generators Fare in These Tests?.- 8 Acknowledgements.- 9 References.- Nets, (ts)-Sequences, and Algebraic Geometry.- 1 Introduction.- 2 Basic Concepts.- 3 The Digital Method.- 4 Background on Algebraic Curves over Finite Fields.- 5 Construction of (ts)-Sequences.- 6 New Constructions of (tms)-Nets.- 7 New Algebraic Curves with Many Rational Points.- 8 References.- Financial Applications of Monte Carlo and Quasi-Monte Carlo Methods.- 1 Introduction.- 2 Monte Carlo Methods for Finance Applications.- 2.1 Preliminaries for Derivative Pricing.- 2.2 Variance Reduction Techniques.- 2.3 Caveats for Computer Implementation.- 3 Speeding Up by Quasi-Monte Carlo Methods.- 3.1 What are Quasi-Monte Carlo Methods?.- 3.2 Generalized Faure Sequences.- 3.3 Numerical Experiments.- 3.4 Discussions.- 4 Future Topics.- 4.1 Monte Carlo Simulations for American Options.- 4.2 Research Issues Related to Quasi-Monte Carlo Methods.- 5 References.


Mathematics of Computation | 1994

-sequences, Kronecker-type sequences, and Diophantine approximations of formal Laurent series

Gerhard Larcher; Wolfgang Ch. Schmid; Reinhard Wolf

A detailed study of digital (t, m, s)-nets and digital (T,s)-sequences constructed over finite rings is carried out. We present general existence theorems for digital nets and sequences and also explicit constructions. Special attention is devoted to the case where the finite ring is a residue class ring of the integers. This study is motivated by the problem of numerical integration of multivariate Walsh series by quasi-Monte Carlo methods, for which we also provide a general error bound.

Collaboration


Dive into the Gerhard Larcher's collaboration.

Top Co-Authors

Avatar

Friedrich Pillichshammer

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar

Christoph Aistleitner

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Roswitha Hofer

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar

Harald Niederreiter

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert F. Tichy

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Aicke Hinrichs

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar

Peter Kritzer

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lucia Del Chicca

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar

Michael Drmota

Vienna University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge