Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerhard Rempe is active.

Publication


Featured researches published by Gerhard Rempe.


Physical Review Letters | 2002

Deterministic single-photon source for distributed quantum networking

Axel Kuhn; Markus Hennrich; Gerhard Rempe

A sequence of single photons is emitted on demand from a single three-level atom strongly coupled to a high-finesse optical cavity. The photons are generated by an adiabatically driven stimulated Raman transition between two atomic ground states, with the vacuum field of the cavity stimulating one branch of the transition, and laser pulses deterministically driving the other branch. This process is unitary and therefore intrinsically reversible, which is essential for quantum communication and networking, and the photons should be appropriate for all-optical quantum information processing.


Nature | 2012

An elementary quantum network of single atoms in optical cavities

Stephan Ritter; Christian Nölleke; Carolin Hahn; Andreas Reiserer; Andreas Neuzner; Manuel Uphoff; Martin Mücke; Eden Figueroa; J. Bochmann; Gerhard Rempe

Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom–cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way—by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.


Optics Letters | 1992

Measurement of ultralow losses in an optical interferometer

Gerhard Rempe; R. J. Thompson; H. J. Kimble; R. Lalezari

Characterizations of low-loss mirrors by measurements of cavity-decay time and of cavity finesse are reported near 850 nm. The lowest observed mirror loss is 1.6 x 10^-6 (transmission plus absorption and scatter), which corresponds to a reflectivity of 0.9999984 and to a cavity finesse of 1.9 x 10^6.


Nature | 2000

Trapping an atom with single photons

Pepijn Willemszoon Harry Pinkse; Thomas Fischer; Peter Maunz; Gerhard Rempe

The creation of a photon–atom bound state was first envisaged for the case of an atom in a long-lived excited state inside a high-quality microwave cavity. In practice, however, light forces in the microwave domain are insufficient to support an atom against gravity. Although optical photons can provide forces of the required magnitude, atomic decay rates and cavity losses are larger too, and so the atom–cavity system must be continually excited by an external laser. Such an approach also permits continuous observation of the atoms position, by monitoring the light transmitted through the cavity. The dual role of photons in this system distinguishes it from other single-atom experiments such as those using magneto-optical traps, ion traps or a far-off-resonance optical trap. Here we report high-finesse optical cavity experiments in which the change in transmission induced by a single slow atom approaching the cavity triggers an external feedback switch which traps the atom in a light field containing about one photon on average. The oscillatory motion of the trapped atom induces oscillations in the transmitted light intensity; we attribute periodic structure in intensity-correlation-function data to ‘long-distance’ flights of the atom between different anti-nodes of the standing-wave in the cavity. The system should facilitate investigations of the dynamics of single quantum objects and may find future applications in quantum information processing.


Nature | 1998

Origin of quantum-mechanical complementarity probed by a ‘which-way’ experiment in an atom interferometer

Stephan Dürr; T. Nonn; Gerhard Rempe

The principle of complementarity refers to the ability of quantum-mechanical entities to behave as particles or waves under different experimental conditions. For example, in the famous double-slit experiment, a single electron can apparently pass through both apertures simultaneously, forming an interference pattern. But if a ‘which-way’ detector is employed to determine the particles path, the interference pattern is destroyed. This is usually explained in terms of Heisenbergs uncertainty principle, in which the acquisition of spatial information increases the uncertainty in the particles momentum, thus destroying the interference. Here we report a which-way experiment in an atom interferometer in which the ‘back action’ of path detection on the atoms momentum is too small to explain the disappearance of the interference pattern. We attribute it instead to correlations between the which-way detector and the atomic motion, rather than to the uncertainty principle.


international quantum electronics conference | 2004

Cavity cooling of a single atom

Peter Maunz; Thomas Puppe; Ingrid Schuster; Niels Syassen; Pepijn Willemszoon Harry Pinkse; Gerhard Rempe

All conventional methods to laser-cool atoms rely on repeated cycles of optical pumping and spontaneous emission of a photon by the atom. Spontaneous emission in a random direction provides the dissipative mechanism required to remove entropy from the atom. However, alternative cooling methods have been proposed for a single atom strongly coupled to a high-finesse cavity; the role of spontaneous emission is replaced by the escape of a photon from the cavity. Application of such cooling schemes would improve the performance of atom–cavity systems for quantum information processing. Furthermore, as cavity cooling does not rely on spontaneous emission, it can be applied to systems that cannot be laser-cooled by conventional methods; these include molecules (which do not have a closed transition) and collective excitations of Bose condensates, which are destroyed by randomly directed recoil kicks. Here we demonstrate cavity cooling of single rubidium atoms stored in an intracavity dipole trap. The cooling mechanism results in extended storage times and improved localization of atoms. We estimate that the observed cooling rate is at least five times larger than that produced by free-space cooling methods, for comparable excitation of the atom.


Nature | 2011

A single-atom quantum memory

Holger P. Specht; Christian Nölleke; Andreas Reiserer; Manuel Uphoff; Eden Figueroa; Stephan Ritter; Gerhard Rempe

The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180 microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates and quantum repeaters.


Physical Review Letters | 2004

Quantum Beat of Two Single Photons

Thomas Legero; Tatjana Wilk; Markus Hennrich; Gerhard Rempe; Axel Kuhn

The interference of two single photons impinging on a beam splitter is measured in a time-resolved manner. Using long photons of different frequencies emitted from an atom-cavity system, a quantum beat with a visibility close to 100% is observed in the correlation between the photodetections at the output ports of the beam splitter. The time dependence of the beat amplitude reflects the coherence properties of the photons. Most remarkably, simultaneous photodetections are never observed, so that a temporal filter allows one to obtain perfect two-photon coalescence even for nonperfect photons.


Physical Review Letters | 2004

Observation of molecules produced from a Bose-Einstein condensate.

Stephan Dürr; Thomas Volz; Andreas Marte; Gerhard Rempe

Molecules are created from a Bose-Einstein condensate of atomic 87Rb using a Feshbach resonance. A Stern-Gerlach field is applied, in order to spatially separate the molecules from the remaining atoms. For detection, the molecules are converted back into atoms, again using the Feshbach resonance. The measured position of the molecules yields their magnetic moment. This quantity strongly depends on the magnetic field, thus revealing an avoided crossing of two bound states at a field value slightly below the Feshbach resonance. This avoided crossing is exploited to trap the molecules in one dimension.


Nature | 2014

A quantum gate between a flying optical photon and a single trapped atom

Andreas Reiserer; Norbert Kalb; Gerhard Rempe; Stephan Ritter

The steady increase in control over individual quantum systems supports the promotion of a quantum technology that could provide functionalities beyond those of any classical device. Two particularly promising applications have been explored during the past decade: photon-based quantum communication, which guarantees unbreakable encryption but which still has to be scaled to high rates over large distances, and quantum computation, which will fundamentally enhance computability if it can be scaled to a large number of quantum bits (qubits). It was realized early on that a hybrid system of light qubits and matter qubits could solve the scalability problem of each field—that of communication by use of quantum repeaters, and that of computation by use of an optical interconnect between smaller quantum processors. To this end, the development of a robust two-qubit gate that allows the linking of distant computational nodes is “a pressing challenge”. Here we demonstrate such a quantum gate between the spin state of a single trapped atom and the polarization state of an optical photon contained in a faint laser pulse. The gate mechanism presented is deterministic and robust, and is expected to be applicable to almost any matter qubit. It is based on reflection of the photonic qubit from a cavity that provides strong light–matter coupling. To demonstrate its versatility, we use the quantum gate to create atom–photon, atom–photon–photon and photon–photon entangled states from separable input states. We expect our experiment to enable various applications, including the generation of atomic and photonic cluster states and Schrödinger-cat states, deterministic photonic Bell-state measurements, scalable quantum computation and quantum communication using a redundant quantum parity code.

Collaboration


Dive into the Gerhard Rempe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge