Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephan Ritter is active.

Publication


Featured researches published by Stephan Ritter.


Nature | 2012

An elementary quantum network of single atoms in optical cavities

Stephan Ritter; Christian Nölleke; Carolin Hahn; Andreas Reiserer; Andreas Neuzner; Manuel Uphoff; Martin Mücke; Eden Figueroa; J. Bochmann; Gerhard Rempe

Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom–cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way—by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.


Science | 2008

Cavity Optomechanics with a Bose-Einstein Condensate

Ferdinand Brennecke; Stephan Ritter; Tobias Donner; Tilmann Esslinger

Cavity optomechanics studies the coupling between a mechanical oscillator and the electromagnetic field in a cavity. We report on a cavity optomechanical system in which a collective density excitation of a Bose-Einstein condensate serves as the mechanical oscillator coupled to the cavity field. A few photons inside the ultrahigh-finesse cavity trigger strongly driven back-action dynamics, in quantitative agreement with a cavity optomechanical model. We approach the strong coupling regime of cavity optomechanics, where a single excitation of the mechanical oscillator substantially influences the cavity field. The results open up new directions for investigating mechanical oscillators in the quantum regime and the border between classical and quantum physics.


Nature | 2007

Cavity QED with a Bose-Einstein condensate.

Ferdinand Brennecke; Tobias Donner; Stephan Ritter; Thomas Bourdel; Michael Köhl; Tilman Esslinger

Cavity quantum electrodynamics (cavity QED) describes the coherent interaction between matter and an electromagnetic field confined within a resonator structure, and is providing a useful platform for developing concepts in quantum information processing. By using high-quality resonators, a strong coupling regime can be reached experimentally in which atoms coherently exchange a photon with a single light-field mode many times before dissipation sets in. This has led to fundamental studies with both microwave and optical resonators. To meet the challenges posed by quantum state engineering and quantum information processing, recent experiments have focused on laser cooling and trapping of atoms inside an optical cavity. However, the tremendous degree of control over atomic gases achieved with Bose–Einstein condensation has so far not been used for cavity QED. Here we achieve the strong coupling of a Bose–Einstein condensate to the quantized field of an ultrahigh-finesse optical cavity and present a measurement of its eigenenergy spectrum. This is a conceptually new regime of cavity QED, in which all atoms occupy a single mode of a matter-wave field and couple identically to the light field, sharing a single excitation. This opens possibilities ranging from quantum communication to a wealth of new phenomena that can be expected in the many-body physics of quantum gases with cavity-mediated interactions.


Nature | 2011

A single-atom quantum memory

Holger P. Specht; Christian Nölleke; Andreas Reiserer; Manuel Uphoff; Eden Figueroa; Stephan Ritter; Gerhard Rempe

The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180u2009microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates and quantum repeaters.


Physical Review Letters | 2005

Correlations and Counting Statistics of an Atom Laser

Anton Öttl; Stephan Ritter; Michael Köhl; Tilman Esslinger

We demonstrate time-resolved counting of single atoms extracted from a weakly interacting Bose-Einstein condensate of 87Rb atoms. The atoms are detected with a high-finesse optical cavity and single atom transits are identified. An atom laser beam is formed by continuously output coupling atoms from the Bose-Einstein condensate. We investigate the full counting statistics of this beam and measure its second order correlation function g((2))(tau) in a Hanbury Brown-Twiss type experiment. For the monoenergetic atom laser we observe a constant correlation function g((2))(tau)=1.00 +/- 0.01 and an atom number distribution close to a Poissonian statistics. A pseudothermal atomic beam shows a bunching behavior and a Bose distributed counting statistics.


Nature | 2014

A quantum gate between a flying optical photon and a single trapped atom

Andreas Reiserer; Norbert Kalb; Gerhard Rempe; Stephan Ritter

The steady increase in control over individual quantum systems supports the promotion of a quantum technology that could provide functionalities beyond those of any classical device. Two particularly promising applications have been explored during the past decade: photon-based quantum communication, which guarantees unbreakable encryption but which still has to be scaled to high rates over large distances, and quantum computation, which will fundamentally enhance computability if it can be scaled to a large number of quantum bits (qubits). It was realized early on that a hybrid system of light qubits and matter qubits could solve the scalability problem of each field—that of communication by use of quantum repeaters, and that of computation by use of an optical interconnect between smaller quantum processors. To this end, the development of a robust two-qubit gate that allows the linking of distant computational nodes is “a pressing challenge”. Here we demonstrate such a quantum gate between the spin state of a single trapped atom and the polarization state of an optical photon contained in a faint laser pulse. The gate mechanism presented is deterministic and robust, and is expected to be applicable to almost any matter qubit. It is based on reflection of the photonic qubit from a cavity that provides strong light–matter coupling. To demonstrate its versatility, we use the quantum gate to create atom–photon, atom–photon–photon and photon–photon entangled states from separable input states. We expect our experiment to enable various applications, including the generation of atomic and photonic cluster states and Schrödinger-cat states, deterministic photonic Bell-state measurements, scalable quantum computation and quantum communication using a redundant quantum parity code.


Nature | 2010

Electromagnetically induced transparency with single atoms in a cavity

Martin Mücke; Eden Figueroa; J. Bochmann; Carolin Hahn; Karim Murr; Stephan Ritter; Celso Jorge Villas-Boas; Gerhard Rempe

Optical nonlinearities offer unique possibilities for the control of light with light. A prominent example is electromagnetically induced transparency (EIT), where the transmission of a probe beam through an optically dense medium is manipulated by means of a control beam. Scaling such experiments into the quantum domain with one (or just a few) particles of light and matter will allow for the implementation of quantum computing protocols with atoms and photons, or the realization of strongly interacting photon gases exhibiting quantum phase transitions of light. Reaching these aims is challenging and requires an enhanced matter–light interaction, as provided by cavity quantum electrodynamics. Here we demonstrate EIT with a single atom quasi-permanently trapped inside a high-finesse optical cavity. The atom acts as a quantum-optical transistor with the ability to coherently control the transmission of light through the cavity. We investigate the scaling of EIT when the atom number is increased one-by-one. The measured spectra are in excellent agreement with a theoretical model. Merging EIT with cavity quantum electrodynamics and single quanta of matter is likely to become the cornerstone for novel applications, such as dynamic control of the photon statistics of propagating light fields or the engineering of Fock state superpositions of flying light pulses.


Science | 2013

Nondestructive Detection of an Optical Photon

Andreas Reiserer; Stephan Ritter; Gerhard Rempe

Nondestructive Photon Detection The click of a photon detector is the usual method for detecting a photon and can be sufficiently sensitive to detect even a single photon. Such a detection process is, however, destructive—the photon is annihilated. Reiserer et al. (p. 1349, published online 14 November) describe an experimental system capable of detecting a single photon without destroying it. An atom in a cavity can be used for the nondestructive detection of optical photons. All optical detectors to date annihilate photons upon detection, thus excluding repeated measurements. Here, we demonstrate a robust photon detection scheme that does not rely on absorption. Instead, an incoming photon is reflected from an optical resonator containing a single atom prepared in a superposition of two states. The reflection toggles the superposition phase, which is then measured to trace the photon. Characterizing the device with faint laser pulses, a single-photon detection efficiency of 74% and a survival probability of 66% are achieved. The efficiency can be further increased by observing the photon repeatedly. The large single-photon nonlinearity of the experiment should enable the development of photonic quantum gates and the preparation of exotic quantum states of light.


Nature | 2016

A photon–photon quantum gate based on a single atom in an optical resonator

Bastian Hacker; Stephan Welte; Gerhard Rempe; Stephan Ritter

That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon–photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other’s phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon’s polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because “no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift”. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light–matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan–Kimble protocol of a universal controlled phase flip (π phase shift) photon–photon quantum gate. We achieve an average gate fidelity of (76.2u2009±u20093.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon–photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon operations. The demonstrated feasibility of deterministic protocols for the optical processing of quantum information could lead to new applications in which photons are essential, especially long-distance quantum communication and scalable quantum computing.


european quantum electronics conference | 2011

Remote entanglement between a single atom and a Bose-Einstein condensate

Carolin Hahn; Matthias Lettner; Martin Mücke; S. Riedl; Christoph Vo; Simon Baur; Jörg Bochmann; Stephan Ritter; Stephan Dürr; Gerhard Rempe

Entanglement has been recognised as a puzzling yet central element of quantum physics. While photons serve as flying qubits to distribute entanglement, the entanglement of stationary qubits at remote sites is a key resource for envisioned applications like distributed quantum computing [1]. In our experiment we create remote entanglement between a single atom located inside a high-finesse optical cavity and a Bose-Einstein condensate (BEC). To this end we generate a single photon in the atom-cavity system, entangling the photon polarisation with the atomic Zeeman state [2,3]. The photon is transported to a different laboratory in an optical fiber, where it is stored in a BEC employing electromagnetically induced transparency (EIT) [4–6]. This converts the atom-photon entanglement into remote matter-matter entanglement. Subsequently we map the matter-matter entanglement onto photon-photon entanglement. The experimental setup is sketched in Fig. 1.

Collaboration


Dive into the Stephan Ritter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge