Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerhard Sengle is active.

Publication


Featured researches published by Gerhard Sengle.


Journal of Biological Chemistry | 2008

Targeting of Bone Morphogenetic Protein Growth Factor Complexes to Fibrillin

Gerhard Sengle; Noe L. Charbonneau; Robert N. Ono; Takako Sasaki; Jennifer Alvarez; Douglas R. Keene; Hans Peter Bächinger; Lynn Y. Sakai

Both latent transforming growth factor-β (TGF-β)-binding proteins fibrillins are components of microfibril networks, and both interact with members of the TGF-β family of growth factors. Interactions between latent TGF-β-binding protein-1 and TGF-β and between fibrillin-1 and bone morphogenetic protein-7 (BMP-7) are mediated by the prodomain of growth factor complexes. To extend this information, investigations were performed to test whether stable complexes are formed by additional selected TGF-β family members. Using velocity sedimentation in sucrose gradients as an assay, complex formation was demonstrated for BMP-7 and growth and differentiation factor-8 (GDF-8), which are known to exist in prodomain/growth factor complexes. Comparison of these results with complex formation by BMP-2, BMP-4 (full-length and shortened propeptides), BMP-10, and GDF-5 allowed us to conclude that all, except for BMP-2 and the short BMP-4 propeptides, formed complexes with their growth factors. Using surface plasmon resonance, binding affinities between fibrillin and all propeptides were determined. Binding studies revealed that the N-terminal end of fibrillin-1 serves as a universal high affinity docking site for the propeptides of BMP-2, -4, -7, and -10 and GDF-5, but not GDF-8, and located the BMP/GDF binding site within the N-terminal domain in fibrillin-1. Rotary shadowing electron microscopy of molecules of BMP-7 complex bound to fibrillin-1 confirmed these findings and also showed that prodomain binding targets the growth factor to fibrillin. Immunolocalization of BMP-4 demonstrated fibrillar staining limited to certain tissues, indicating tissue-specific targeting of BMP-4. These data implicate the fibrillin microfibril network in the extracellular control of BMP signaling and demonstrate differences in how prodomains target their growth factors to the extracellular space.


Journal of Biological Chemistry | 2011

Prodomains of Transforming Growth Factor β (TGFβ) Superfamily Members Specify Different Functions EXTRACELLULAR MATRIX INTERACTIONS AND GROWTH FACTOR BIOAVAILABILITY

Gerhard Sengle; Robert N. Ono; Takako Sasaki; Lynn Y. Sakai

The specific functions of the prodomains of TGFβ superfamily members are largely unknown. Interactions are known between prodomains of TGFβ-1-3 and latent TGFβ-binding proteins and between prodomains of BMP-2, -4, -7, and -10 and GDF-5 and fibrillins, raising the possibility that latent TGFβ-binding proteins and fibrillins may mediate interactions with all other prodomains of this superfamily. This possibility is tested in this study. Results show that the prodomain of BMP-5 interacts with the N-terminal regions of fibrillin-1 and -2 in a site similar to the binding sites for other bone morphogenetic proteins. However, in contrast, the prodomain of GDF-8 (myostatin) interacts with the glycosaminoglycan side chains of perlecan. The binding site for the GDF-8 prodomain is likely the heparan sulfate chain present on perlecan domain V. These results support and extend the emerging concept that TGFβ superfamily prodomains target their growth factor dimers to extracellular matrix macromolecules. In addition, biochemical studies of prodomain·growth factor complexes were performed to identify inactive complexes. For some members of the superfamily, the prodomain is noncovalently associated with its growth factor dimer in an inactive complex; for others, the prodomain·growth factor complex is active, even though the prodomain is noncovalently associated with its growth factor dimer. Results show that the BMP-10 prodomain, in contrast to BMP-4, -5, and -7 prodomains, can inhibit the bioactivity of the BMP-10 growth factor and suggest that the BMP-10 complex is like TGFβ and GDF-8 complexes, which can be activated by cleavage of the associated prodomain.The specific functions of the prodomains of TGFβ superfamily members are largely unknown. Interactions are known between prodomains of TGFβ-1–3 and latent TGFβ-binding proteins and between prodomains of BMP-2, -4, -7, and -10 and GDF-5 and fibrillins, raising the possibility that latent TGFβ-binding proteins and fibrillins may mediate interactions with all other prodomains of this superfamily. This possibility is tested in this study. Results show that the prodomain of BMP-5 interacts with the N-terminal regions of fibrillin-1 and -2 in a site similar to the binding sites for other bone morphogenetic proteins. However, in contrast, the prodomain of GDF-8 (myostatin) interacts with the glycosaminoglycan side chains of perlecan. The binding site for the GDF-8 prodomain is likely the heparan sulfate chain present on perlecan domain V. These results support and extend the emerging concept that TGFβ superfamily prodomains target their growth factor dimers to extracellular matrix macromolecules. In addition, biochemical studies of prodomain·growth factor complexes were performed to identify inactive complexes. For some members of the superfamily, the prodomain is noncovalently associated with its growth factor dimer in an inactive complex; for others, the prodomain·growth factor complex is active, even though the prodomain is noncovalently associated with its growth factor dimer. Results show that the BMP-10 prodomain, in contrast to BMP-4, -5, and -7 prodomains, can inhibit the bioactivity of the BMP-10 growth factor and suggest that the BMP-10 complex is like TGFβ and GDF-8 complexes, which can be activated by cleavage of the associated prodomain.


Journal of Biological Chemistry | 2009

Latent Transforming Growth Factor β-binding Proteins and Fibulins Compete for Fibrillin-1 and Exhibit Exquisite Specificities in Binding Sites

Robert N. Ono; Gerhard Sengle; Noe L. Charbonneau; Valerie M. Carlberg; Hans Peter Bächinger; Takako Sasaki; Sui Lee-Arteaga; Lior Zilberberg; Daniel B. Rifkin; Francesco Ramirez; Lynn Y. Sakai

Latent transforming growth factor (TGF) β-binding proteins (LTBPs) interact with fibrillin-1. This interaction is important for proper sequestration and extracellular control of TGFβ. Surface plasmon resonance interaction studies show that residues within the first hybrid domain (Hyb1) of fibrillin-1 contribute to interactions with LTBP-1 and LTBP-4. Modulation of binding affinities by fibrillin-1 polypeptides in which residues in the third epidermal growth factor-like domain (EGF3) are mutated demonstrates that the binding sites for LTBP-1 and LTBP-4 are different and suggests that EGF3 may also contribute residues to the binding site for LTBP-4. In addition, fibulin-2, fibulin-4, and fibulin-5 bind to residues contained within EGF3/Hyb1, but mutated polypeptides again indicate differences in their binding sites in fibrillin-1. Results demonstrate that these protein-protein interactions exhibit “exquisite specificities,” a phrase commonly used to describe monoclonal antibody interactions. Despite these differences, interactions between LTBP-1 and fibrillin-1 compete for interactions between fibrillin-1 and these fibulins. All of these proteins have been immunolocalized to microfibrils. However, in fibrillin-1 (Fbn1) null fibroblast cultures, LTBP-1 and LTBP-4 are not incorporated into microfibrils. In contrast, in fibulin-2 (Fbln2) null or fibulin-4 (Fbln4) null cultures, fibrillin-1, LTBP-1, and LTBP-4 are incorporated into microfibrils. These data show for the first time that fibrillin-1, but not fibulin-2 or fibulin-4, is required for appropriate matrix assembly of LTBPs. These studies also suggest that the fibulins may affect matrix sequestration of LTBPs, because in vitro interactions between these proteins are competitive.


FEBS Letters | 2005

The matrilins – adaptor proteins in the extracellular matrix

Raimund Wagener; Harald W. A. Ehlen; Ya-Ping Ko; Birgit Kobbe; Henning H. Mann; Gerhard Sengle; Mats Paulsson

The matrilins form a four‐member family of modular, multisubunit matrix proteins, which are expressed in cartilage but also in many other forms of extracellular matrix. They participate in the formation of fibrillar or filamentous structures and are often associated with collagens. It appears that they mediate interactions between collagen‐containing fibrils and other matrix constituents, such as aggrecan. This adaptor function may be modulated by physiological proteolysis that causes the loss of single subunits and thereby a decrease in binding avidity. Attempts to study matrilin function by gene inactivation in mouse have been frustrating and so far not yielded pronounced phenotypes, presumably because of the extensive redundancy within the family allowing compensation by one family member for another. However, mutations in matrilin‐3 in humans cause different forms of chondrodysplasias and perhaps also hand osteoarthritis. As loss of matrilin‐3 is not critical in mouse, these phenotypes are likely to be caused by dominant negative effects.


Journal of Molecular Biology | 2008

A New Model for Growth Factor Activation: Type II Receptors Compete with the Prodomain for BMP-7

Gerhard Sengle; Robert N. Ono; Karen M. Lyons; Hans Peter Bächinger; Lynn Y. Sakai

Bone morphogenetic proteins (BMPs) are morphogens with long-range signaling activities. BMP-7 is secreted as a stable complex consisting of a growth factor noncovalently associated with two propeptides. In other transforming growth factor-beta-like growth factor complexes, the prodomain (pd) confers latency to the complex. However, we detected no difference in signaling capabilities between the growth factor and the BMP-7 complex in multiple in vitro bioactivity assays. Biochemical and biophysical methods elucidated the interaction between the BMP-7 complex and the extracellular domains of its type I and type II receptors. Results showed that type II receptors, such as BMP receptor II, activin receptor IIA, and activin receptor IIB, competed with the pd for binding to the growth factor and displaced the pd from the complex. In contrast, type I receptors interacted with the complex without displacing the pd. These studies suggest a new model for growth factor activation in which proteases or other extracellular molecules are not required and provide a molecular mechanism consistent with a role for BMP receptors in the establishment of early morphogen gradients.


Journal of Biological Chemistry | 2010

In Vivo Studies of Mutant Fibrillin-1 Microfibrils

Noe L. Charbonneau; Eric J. Carlson; Sara F. Tufa; Gerhard Sengle; Elise C. Manalo; Valerie M. Carlberg; Francesco Ramirez; Douglas R. Keene; Lynn Y. Sakai

In humans, mutations in fibrillin-1 result in a variety of genetic disorders with distinct clinical phenotypes. While most of the known mutations in fibrillin-1 cause Marfan syndrome, a number of other mutations lead to clinical features unrelated to Marfan syndrome. Pathogenesis of Marfan syndrome is currently thought to be driven by mechanisms due to haploinsufficiency of wild-type fibrillin-1. However, haploinsufficiency-driven mechanisms cannot explain the distinct phenotypes found in other fibrillinopathies. To test the hypothesis that mutations in fibrillin-1 cause disorders through primary effects on microfibril structure, two different mutations were generated in Fbn1 in mice. One mutation leads to a truncated fibrillin-1 molecule that is tagged with green fluorescent protein, allowing visualization of mutant fibrillin-1 incorporated into microfibrils. In heterozygosity, these mutant mice demonstrate progressive fragmentation of the aortic elastic lamellae and also display fragmentation of microfibrils in other tissues. Fibrillin-2 epitopes are also progressively revealed in these mice, suggesting that fibrillin-2 immunoreactivity can serve as a marker for microfibril degradation. In contrast, a second mutation (in-frame deletion of the first hybrid domain) in fibrillin-1 results in stable microfibrils, demonstrating that fibrillin-1 molecules are not required to be in perfect register for microfibril structure and function and that the first hybrid domain is dispensable for microfibril assembly. Taken together, these results suggest that perturbation of microfibril structure may underlie one of the major features of the Marfan syndrome: fragmentation of aortic elastic lamellae.


PLOS Genetics | 2012

Microenvironmental Regulation by Fibrillin-1

Gerhard Sengle; Ko Tsutsui; Douglas R. Keene; Sara F. Tufa; Eric J. Carlson; Noe L. Charbonneau; Robert N. Ono; Takako Sasaki; Mary K. Wirtz; John R. Samples; Liselotte I. Fessler; John H. Fessler; Kiyotoshi Sekiguchi; Susan J. Hayflick; Lynn Y. Sakai

Fibrillin-1 is a ubiquitous extracellular matrix molecule that sequesters latent growth factor complexes. A role for fibrillin-1 in specifying tissue microenvironments has not been elucidated, even though the concept that fibrillin-1 provides extracellular control of growth factor signaling is currently appreciated. Mutations in FBN1 are mainly responsible for the Marfan syndrome (MFS), recognized by its pleiotropic clinical features including tall stature and arachnodactyly, aortic dilatation and dissection, and ectopia lentis. Each of the many different mutations in FBN1 known to cause MFS must lead to similar clinical features through common mechanisms, proceeding principally through the activation of TGFβ signaling. Here we show that a novel FBN1 mutation in a family with Weill-Marchesani syndrome (WMS) causes thick skin, short stature, and brachydactyly when replicated in mice. WMS mice confirm that this mutation does not cause MFS. The mutation deletes three domains in fibrillin-1, abolishing a binding site utilized by ADAMTSLIKE-2, -3, -6, and papilin. Our results place these ADAMTSLIKE proteins in a molecular pathway involving fibrillin-1 and ADAMTS-10. Investigations of microfibril ultrastructure in WMS humans and mice demonstrate that modulation of the fibrillin microfibril scaffold can influence local tissue microenvironments and link fibrillin-1 function to skin homeostasis and the regulation of dermal collagen production. Hence, pathogenetic mechanisms caused by dysregulated WMS microenvironments diverge from Marfan pathogenetic mechanisms, which lead to broad activation of TGFβ signaling in multiple tissues. We conclude that local tissue-specific microenvironments, affected in WMS, are maintained by a fibrillin-1 microfibril scaffold, modulated by ADAMTSLIKE proteins in concert with ADAMTS enzymes.


Journal of Biological Chemistry | 2006

Effects of Fibrillin-1 Degradation on Microfibril Ultrastructure

Chiu-Liang Kuo; Zenzo Isogai; Douglas R. Keene; Noriko Hazeki; Robert N. Ono; Gerhard Sengle; Hans Peter Bächinger; Lynn Y. Sakai

Current models of the elastic properties and structural organization of fibrillin-containing microfibrils are based primarily on microscopic analyses of microfibrils liberated from connective tissues after digestion with crude collagenase. Results presented here demonstrate that this digestion resulted in the cleavage of fibrillin-1 and loss of specific immunoreactive epitopes. The proline-rich region and regions near the second 8-cysteine domain in fibrillin-1 were easily cleaved by crude collagenase. Other sites that may also be cleaved during microfibril digestion and extraction were identified. In contrast to collagenase-digested microfibrils, guanidine-extracted microfibrils contained all fibrillin-1 epitopes recognized by available antibodies. The ultrastructure of guanidine-extracted microfibrils differed markedly from that of collagenase-digested microfibrils. Fibrillin-1 filaments splayed out, extending beyond the width of the periodic globular beads. Both guanidine-extracted and collagenase-digested microfibrils were subjected to extensive digestion by crude collagenase. Collagenase digestion of guanidine-extracted microfibrils removed the outer filaments, revealing a core structure. In contrast to microfibrils extracted from tissues, cell culture microfibrils could be digested into short units containing just a few beads. These data suggest that additional cross-links stabilize the long beaded microfibrils in tissues. Based on the microfibril morphologies observed after these experiments, on the crude collagenase cleavage sites identified in fibrillin-1, and on known antibody binding sites in fibrillin-1, a model is proposed in which fibrillin-1 molecules are staggered in microfibrils. This model further suggests that the N-terminal half of fibrillin-1 is asymmetrically exposed in the outer filaments, whereas the C-terminal half of fibrillin-1 is present in the interior of the microfibril.


Journal of Biological Chemistry | 2010

ADAMTSL-6 Is a Novel Extracellular Matrix Protein That Binds to Fibrillin-1 and Promotes Fibrillin-1 Fibril Formation

Ko Tsutsui; Ri-ichiroh Manabe; Tomiko Yamada; Itsuko Nakano; Yasuko Oguri; Douglas R. Keene; Gerhard Sengle; Lynn Y. Sakai; Kiyotoshi Sekiguchi

ADAMTS (A disintegrin and metalloproteinase with thrombospondin motifs)-like (ADAMTSL) proteins, a subgroup of the ADAMTS superfamily, share several domains with ADAMTS proteinases, including thrombospondin type I repeats, a cysteine-rich domain, and an ADAMTS spacer, but lack a catalytic domain. We identified two new members of ADAMTSL proteins, ADAMTSL-6α and -6β, that differ in their N-terminal amino acid sequences but have common C-terminal regions. When transfected into MG63 osteosarcoma cells, both isoforms were secreted and deposited into pericellular matrices, although ADAMTSL-6α, in contrast to -6β, was barely detectable in the conditioned medium. Immunolabeling at the light and electron microscopic levels showed their close association with fibrillin-1-rich microfibrils in elastic connective tissues. Surface plasmon resonance analyses demonstrated that ADAMTSL-6β binds to the N-terminal half of fibrillin-1 with a dissociation constant of ∼80 nm. When MG63 cells were transfected or exogenously supplemented with ADAMTSL-6, fibrillin-1 matrix assembly was promoted in the early but not the late stage of the assembly process. Furthermore, ADAMTSL-6 transgenic mice exhibited excessive fibrillin-1 fibril formation in tissues where ADAMTSL-6 was overexpressed. All together, these results indicated that ADAMTSL-6 is a novel microfibril-associated protein that binds directly to fibrillin-1 and promotes fibrillin-1 matrix assembly.


Journal of Histochemistry and Cytochemistry | 2013

A Correlative Method for Imaging Identical Regions of Samples by Micro-CT, Light Microscopy, and Electron Microscopy Imaging Adipose Tissue in a Model System

Gerhard Sengle; Sara F. Tufa; Lynn Y. Sakai; Martin A. Zulliger; Douglas R. Keene

We present a method in which a precise region of interest within an intact organism is spatially mapped in three dimensions by non-invasive micro-computed X-ray tomography (micro-CT), then further evaluated by light microscopy (LM) and transmission electron microscopy (TEM). Tissues are prepared as if for TEM including osmium fixation, which imparts soft tissue contrast in the micro-CT due to its strong X-ray attenuation. This method may therefore be applied to embedded, archived TEM samples. Upon selection of a two-dimensional (2-D) projection from a region of interest (ROI) within the three-dimensional volume, the epoxy-embedded sample is oriented for microtomy so that the sectioning plane is aligned with the micro-CT projection. Registration is verified by overlaying LM images with 2-D micro-CT projections. Structures that are poorly resolved in the micro-CT may be evaluated at TEM resolution by observing the next serial ultrathin section, thereby accessing the same ROI by all three imaging techniques. We compare white adipose tissue within the forelimbs of mice harboring a lipid-altering mutation with their littermate controls. We demonstrate that individual osmium-stained lipid droplets as small as 15 µm and separated by as little as 35 µm may be discerned as separate entities in the micro-CT, validating this to be a high-resolution, non-destructive technique for evaluation of fat content.

Collaboration


Dive into the Gerhard Sengle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas R. Keene

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noe L. Charbonneau

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clair Baldock

Wellcome Trust Centre for Cell-Matrix Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge