Germán Perdomo
University of Castilla–La Mancha
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Germán Perdomo.
Journal of Clinical Investigation | 2008
Adama Kamagate; Shen Qu; Germán Perdomo; Dongming Su; Dae Hyun Kim; Sandra Slusher; Marcia Meseck; H. Henry Dong
Excessive production of triglyceride-rich VLDL is attributable to hypertriglyceridemia. VLDL production is facilitated by microsomal triglyceride transfer protein (MTP) in a rate-limiting step that is regulated by insulin. To characterize the underlying mechanism, we studied hepatic MTP regulation by forkhead box O1 (FoxO1), a transcription factor that plays a key role in hepatic insulin signaling. In HepG2 cells, MTP expression was induced by FoxO1 and inhibited by exposure to insulin. This effect correlated with the ability of FoxO1 to bind and stimulate MTP promoter activity. Deletion or mutation of the FoxO1 target site within the MTP promoter disabled FoxO1 binding and resulted in abolition of insulin-dependent regulation of MTP expression. We generated mice that expressed a constitutively active FoxO1 transgene and found that increased FoxO1 activity was associated with enhanced MTP expression, augmented VLDL production, and elevated plasma triglyceride levels. In contrast, RNAi-mediated silencing of hepatic FoxO1 was associated with reduced MTP and VLDL production in adult mice. Furthermore, we found that hepatic FoxO1 abundance and MTP production were increased in mice with abnormal triglyceride metabolism. These data suggest that FoxO1 mediates insulin regulation of MTP production and that augmented MTP levels may be a causative factor for VLDL overproduction and hypertriglyceridemia in diabetes.
American Journal of Physiology-endocrinology and Metabolism | 2008
Maja Stefanovic-Racic; Germán Perdomo; Benjamin S. Mantell; Ian Sipula; Nicholas F. Brown; Robert M. O'Doherty
Nonalcoholic fatty liver disease (NAFLD), hypertriglyceridemia, and elevated free fatty acids are present in the majority of patients with metabolic syndrome and type 2 diabetes mellitus and are strongly associated with hepatic insulin resistance. In the current study, we tested the hypothesis that an increased rate of fatty acid oxidation in liver would prevent the potentially harmful effects of fatty acid elevation, including hepatic triglyceride (TG) accumulation and elevated TG secretion. Primary rat hepatocytes were transduced with adenovirus encoding carnitine palmitoyltransferase 1a (Adv-CPT-1a) or control adenoviruses encoding either beta-galactosidase (Adv-beta-gal) or carnitine palmitoyltransferase 2 (Adv-CPT-2). Overexpression of CPT-1a increased the rate of beta-oxidation and ketogenesis by approximately 70%, whereas esterification of exogenous fatty acids and de novo lipogenesis were unchanged. Importantly, CPT-1a overexpression was accompanied by a 35% reduction in TG accumulation and a 60% decrease in TG secretion by hepatocytes. There were no changes in secretion of apolipoprotein B (apoB), suggesting the synthesis of smaller, less atherogenic VLDL particles. To evaluate the effect of increasing hepatic CPT-1a activity in vivo, we injected lean or obese male rats with Adv-CPT-1a, Adv-beta-gal, or Adv-CPT-2. Hepatic CPT-1a activity was increased by approximately 46%, and the rate of fatty acid oxidation was increased by approximately 44% in lean and approximately 36% in obese CPT-1a-overexpressing animals compared with Adv-CPT-2- or Adv-beta-gal-treated rats. Similar to observations in vitro, liver TG content was reduced by approximately 37% (lean) and approximately 69% (obese) by this in vivo intervention. We conclude that a moderate stimulation of fatty acid oxidation achieved by an increase in CPT-1a activity is sufficient to substantially reduce hepatic TG accumulation both in vitro and in vivo. Therefore, interventions that increase CPT-1a activity could have potential benefits in the treatment of NAFLD.
Diabetes | 2009
Dongming Su; Gina M. Coudriet; Dae Hyun Kim; Yi Lu; Germán Perdomo; Shen Qu; Sandra Slusher; Hubert M. Tse; Jon D. Piganelli; Nick Giannoukakis; Jian Zhang; H. Henry Dong
OBJECTIVE Macrophages play an important role in the pathogenesis of insulin resistance via the production of proinflammatory cytokines. Our goal is to decipher the molecular linkage between proinflammatory cytokine production and insulin resistance in macrophages. RESEARCH DESIGN AND METHODS We determined cytokine profiles in cultured macrophages and identified interleukin (IL)-1β gene as a potential target of FoxO1, a key transcription factor that mediates insulin action on gene expression. We studied the mechanism by which FoxO1 mediates insulin-dependent regulation of IL-1β expression in cultured macrophages and correlated FoxO1 activity in peritoneal macrophages with IL-1β production profiles in mice with low-grade inflammation or insulin resistance. RESULTS FoxO1 selectively promoted IL-1β production in cultured macrophages. This effect correlated with the ability of FoxO1 to bind and enhance IL-1β promoter activity. Mutations of the FoxO1 binding site within the IL-1β promoter abolished FoxO1 induction of IL-1β expression. Macrophages from insulin-resistant obese db/db mice or lipopolysaccharide-inflicted mice were associated with increased FoxO1 production, correlating with elevated levels of IL-1β mRNA in macrophages and IL-1β protein in plasma. In nonstimulated macrophages, FoxO1 remained inert with benign effects on IL-1β expression. In response to inflammatory stimuli, FoxO1 activity was augmented because of an impaired ability of insulin to phosphorylate FoxO1 and promote its nuclear exclusion. This effect along with nuclear factor-κB acted to stimulate IL-1β production in activated macrophages. CONCLUSIONS FoxO1 signaling through nuclear factor-κB plays an important role in coupling proinflammatory cytokine production to insulin resistance in obesity and diabetes.
American Journal of Physiology-endocrinology and Metabolism | 2012
Margarita Jiménez-Palomares; Juan Jose Ramos-Rodriguez; José Francisco López-Acosta; Mar Pacheco-Herrero; Alfonso M. Lechuga-Sancho; Germán Perdomo; Monica Garcia-Alloza; Irene Cózar-Castellano
Type 2 diabetes (T2D) mellitus and Alzheimers disease (AD) are two prevalent diseases with comparable pathophysiological features and genetic predisposition. Patients with AD are more susceptible to develop T2D. However, the molecular mechanism linking AD and T2D remains elusive. In this study, we have generated a new mouse model to test the hypothesis that AD would prompt the onset of T2D in mice. To test our hypothesis, we crossed Alzheimer APPswe/PS1dE9 (APP/PS1) transgenic mice with mice partially deficient in leptin signaling (db/+). Body weight, plasma glucose, and insulin levels were monitored. Phenotypic characterization of glucose metabolism was performed using glucose and insulin tolerance tests. β-Cell mass, islet volume, and islet number were analyzed by histomorphometry. APP/PS1 coexpression in mice with intact leptin receptor signaling did not show any metabolic perturbations in glucose metabolism or insulin sensitivity. In contrast, APP/PS1 coexpression in db/+ mice resulted in nonfasting hyperglycemia, hyperinsulinemia, and hypercholesterolemia without changes in body weight. Conversely, fasting blood glucose and cholesterol levels remained unchanged. Coinciding with altered glucose metabolism, APP/PS1 coexpression in db/+ mice resulted in glucose intolerance, insulin resistance, and impaired insulin signaling. In addition, histomorphometric analysis of pancreata revealed augmented β-cell mass. Taken together, these findings provide experimental evidence to support the notion that aberrant Aβ production might be a mechanistic link underlying the pathology of insulin resistance and T2D in AD.
Psychoneuroendocrinology | 2013
Juan Jose Ramos-Rodriguez; Oscar Ortiz; Margarita Jiménez-Palomares; Kevin R. Kay; Esther Berrocoso; Maria Isabel Murillo-Carretero; Germán Perdomo; Tara L. Spires-Jones; Irene Cózar-Castellano; Alfonso M. Lechuga-Sancho; Monica Garcia-Alloza
Although age remains the main risk factor to suffer Alzheimers disease (AD) and vascular dementia (VD), type 2 diabetes (T2D) has turned up as a relevant risk factor for dementia. However, the ultimate underlying mechanisms for this association remain unclear. In the present study we analyzed central nervous system (CNS) morphological and functional consequences of long-term insulin resistance and T2D in db/db mice (leptin receptor KO mice). We also included C57Bl6 mice fed with high fat diet (HFD) and a third group of C57Bl6 streptozotocin (STZ) treated mice. Db/db mice exhibited pathological characteristics that mimic both AD and VD, including age dependent cognitive deterioration, brain atrophy, increased spontaneous hemorrhages and tau phosphorylation, affecting the cortex preferentially. A similar profile was observed in STZ-induced diabetic mice. Moreover metabolic parameters, such as body weight, glucose and insulin levels are good predictors of many of these alterations in db/db mice. In addition, in HFD-induced hyperinsulinemia in C57Bl6 mice, we only observed mild CNS alterations, suggesting that central nervous system dysfunction is associated with well established T2D. Altogether our results suggest that T2D may promote many of the pathological and behavioral alterations observed in dementia, supporting that interventions devoted to control glucose homeostasis could improve dementia progress and prognosis.
PLOS ONE | 2012
José Manuel Tirado-Vélez; Insaf Joumady; Ana Saez-Benito; Irene Cózar-Castellano; Germán Perdomo
Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40–70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.
PLOS ONE | 2014
Juan Jose Ramos-Rodriguez; Sara Molina-Gil; Oscar Ortiz-Barajas; Margarita Jiménez-Palomares; Germán Perdomo; Irene Cózar-Castellano; Alfonso M. Lechuga-Sancho; Monica Garcia-Alloza
Type 2 diabetes (T2D) is an important risk factor to suffer dementia, including Alzheimer’s disease (AD), and some neuropathological features observed in dementia could be mediated by T2D metabolic alterations. Since brain atrophy and impaired neurogenesis have been observed both T2D and AD we analyzed central nervous system (CNS) morphological alterations in the db/db mice (leptin receptor KO mice), as a model of long-term insulin resistance and T2D, and in C57Bl6 mice fed with high fat diet (HFD), as a model of diet induced insulin resistance and prediabetes. Db/db mice showed an age-dependent cortical and hippocampal atrophy, whereas in HFD mice cortex and hippocampus were preserved. We also detected increased neurogenesis and cell proliferation rates in young db/db mice when compared with control littermates. Our study shows that metabolic parameters serve as predictors of both atrophy and altered proliferation and neurogenesis in the CNS. Moreover in the cortex, atrophy, cell proliferation and neurogenesis were significantly correlated. Our data suggest that T2D may underline some of the pathological features observed in the dementia process. They also support that blood glucose control in elderly patients could help to slow down dementia evolution and maybe, improve its prognosis.
American Journal of Physiology-endocrinology and Metabolism | 2013
Francisco Visiedo; Fernando Bugatto; Viviana Sánchez; Irene Cózar-Castellano; Jose L. Bartha; Germán Perdomo
Placentas of women with gestational diabetes mellitus (GDM) exhibit an altered lipid metabolism. The mechanism by which GDM is linked to alterations in placental lipid metabolism remains obscure. We hypothesized that high glucose levels reduce mitochondrial fatty acid oxidation (FAO) and increase triglyceride accumulation in human placenta. To test this hypothesis, we measured FAO, fatty acid esterification, de novo fatty acid synthesis, triglyceride levels, and carnitine palmitoyltransferase activities (CPT) in placental explants of women with GDM or no pregnancy complication. In women with GDM, FAO was reduced by ~30% without change in mitochondrial content, and triglyceride content was threefold higher than in the control group. Likewise, in placental explants of women with no complications, high glucose levels reduced FAO by ~20%, and esterification increased linearly with increasing fatty acid concentrations. However, de novo fatty acid synthesis remained unchanged between high and low glucose levels. In addition, high glucose levels increased triglyceride content approximately twofold compared with low glucose levels. Furthermore, etomoxir-mediated inhibition of FAO enhanced esterification capacity by ~40% and elevated triglyceride content 1.5-fold in placental explants of women, with no complications. Finally, high glucose levels reduced CPT I activity by ~70% and phosphorylation levels of acetyl-CoA carboxylase by ~25% in placental explants of women, with no complications. We reveal an unrecognized regulatory mechanism on placental fatty acid metabolism by which high glucose levels reduce mitochondrial FAO through inhibition of CPT I, shifting flux of fatty acids away from oxidation toward the esterification pathway, leading to accumulation of placental triglycerides.
Journal of Biological Chemistry | 2008
Germán Perdomo; Maria A. Martinez-Brocca; Bankim A. Bhatt; Nicholas F. Brown; Robert M. O'Doherty; Adolfo Garcia-Ocaña
Skeletal muscle plays a major role in glucose and lipid metabolism. Active hepatocyte growth factor (HGF) is present in the extracellular matrix in skeletal muscle. However, the effects of HGF on glucose and lipid metabolism in skeletal muscle are completely unknown. We therefore examined the effects of HGF on deoxyglucose uptake (DOGU), glucose utilization, and fatty acid oxidation (FAO) in skeletal muscle cells. HGF significantly enhanced DOGU in mouse soleus muscles in vitro. Furthermore, HGF significantly increased: (i) DOGU in a time- and dose-dependent manner; (ii) glucose utilization; and (iii) plasma membrane expression of Glut-1 and Glut-4 in the rat skeletal muscle model of L6 myotubes. HGF-mediated effect on DOGU was dependent on the activation of phosphatidylinositol 3-kinase signaling pathway. On the other hand, HGF markedly and significantly decreased FAO in L6 myotubes without affecting the activities of carnitine palmitoyltransferase I and II. Collectively, these results indicate that HGF is a potent activator of glucose transport and metabolism and also a strong inhibitor of FAO in rodent myotubes. HGF, through its ability to stimulate glucose transport and metabolism and to impair FAO, may participate in the regulation of glucose disposal in skeletal muscle.
Placenta | 2012
Jose L. Bartha; Francisco Visiedo; A. Fernández-Deudero; Fernando Bugatto; Germán Perdomo
Preeclampsia is a leading cause of maternal and fetal morbidity and mortality in high and low-income countries. The aetiology of preeclampsia is multifactorial and remains obscure. Some evidences suggest that altered placental fatty acid oxidation might play a role in the pathogenesis of preeclampsia. To reveal if placental fatty acid oxidation is reduced in preeclampsia, we evaluate the expression levels of enzymes of mitochondrial fatty acid oxidation using quantitative Real-time PCR and the fatty acid oxidation rate in placental explants. We found that long-chain 3-hydroxyacyl-CoA dehydrogenase levels and fatty acid oxidation capacity were significantly reduced in placentas from women with preeclampsia.