Geromy G. Moore
United States Department of Agriculture
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Geromy G. Moore.
Mycologia | 2009
Bruce W. Horn; Geromy G. Moore; Ignazio Carbone
Aspergillus flavus is the major producer of carcinogenic aflatoxins in crops worldwide and is also an important opportunistic human pathogen in aspergillosis. The sexual state of this heterothallic fungus is described from crosses between strains of the opposite mating type. Sexual reproduction occurred between sexually compatible strains belonging to different vegetative compatibility groups. Multiple, indehiscent ascocarps containing asci and ascospores formed within the pseudoparenchymatous matrix of stromata, which places the fungus in genus Petromyces. The teleomorph of P. flavus could not be distinguished from that of P. parasiticus (anamorph = A. parasiticus), another aflatoxin-producing species, based on morphology of the sexual structures. The two species can be separated by anamorph morphology, mycotoxin profile and molecular characters.
Fungal Genetics and Biology | 2008
Jorge H. Ramirez-Prado; Geromy G. Moore; Bruce W. Horn; Ignazio Carbone
We characterize the mating-type genes in Aspergillus flavus,Aspergillus parasiticus and Petromyces alliaceus. A single MAT1-1 or MAT1-2 gene was detected in the genomes of A. flavus and A. parasiticus, which is consistent with a potential heterothallic organization of MAT genes in these species. In contrast, the only known, functionally homothallic species in Aspergillus section Flavi, P. alliaceus, has tightly linked (<2kb) MAT1-1 and MAT1-2 genes, typical of other self-fertile homothallic euascomycetes. This is the first example of linked MAT genes within a homothallic species of Aspergillus. We tested the null hypothesis of no significant difference in the frequency of MAT1-1 and MAT1-2 in A. flavus and A. parasiticus sampled from a single peanut field in Georgia. For each species, mating-type frequencies were determined for the total population samples and for samples that were clone-corrected based on vegetative compatibility groups (VCGs) and aflatoxin gene cluster haplotypes. There was no significant difference in the frequency of the two mating types for A. flavus and A. parasiticus in either VCG or haplotype clone-corrected samples. The existence of both mating-type genes in equal proportions in A. flavus and A. parasiticus populations, coupled with their expression at the mRNA level and the high amino acid sequence identity of MAT1-1 (77%) and MAT1-2 (83%) with corresponding homologs in P. alliaceus, indicates the potential functionality of these genes and the possible existence of a sexual state in these agriculturally important species.
Molecular Ecology | 2009
Geromy G. Moore; Rakhi Singh; Bruce W. Horn; Ignazio Carbone
Aflatoxins produced by Aspergillus flavus are potent carcinogens that contaminate agricultural crops. Recent efforts to reduce aflatoxin concentrations in crops have focused on biological control using nonaflatoxigenic A. flavus strains AF36 (=NRRL 18543) and NRRL 21882 (the active component of afla‐guard®). However, the evolutionary potential of these strains to remain nonaflatoxigenic in nature is unknown. To elucidate the underlying population processes that influence aflatoxigenicity, we examined patterns of linkage disequilibrium (LD) spanning 21 regions in the aflatoxin gene cluster of A. flavus. We show that recombination events are unevenly distributed across the cluster in A. flavus. Six distinct LD blocks separate late pathway genes aflE, aflM, aflN, aflG, aflL, aflI and aflO, and there is no discernable evidence of recombination among early pathway genes aflA, aflB, aflC, aflD, aflR and aflS. The discordance in phylogenies inferred for the aflW/aflX intergenic region and two noncluster regions, tryptophan synthase and acetamidase, is indicative of trans‐species evolution in the cluster. Additionally, polymorphisms in aflW/aflX divide A. flavus strains into two distinct clades, each harbouring only one of the two approved biocontrol strains. The clade with AF36 includes both aflatoxigenic and nonaflatoxigenic strains, whereas the clade with NRRL 21882 comprises only nonaflatoxigenic strains and includes all strains of A. flavus missing the entire gene cluster or with partial gene clusters. Our detection of LD blocks in partial clusters indicates that recombination may have played an important role in cluster disassembly, and multilocus coalescent analyses of cluster and noncluster regions indicate lineage‐specific gene loss in A. flavus. These results have important implications in assessing the stability of biocontrol strains in nature.
Mycologia | 2011
Bruce W. Horn; Geromy G. Moore; Ignazio Carbone
Sexual reproduction was examined in the aflatoxin-producing fungus Aspergillus nomius. Crosses between sexually compatible strains resulted in the formation of multiple nonostiolate ascocarps within stromata, which places the teleomorph in genus Petromyces. Ascocarp and ascospore morphology in Petromyces nomius were similar to that in P. flavus and P. parasiticus, and differences between teleomorphs were insufficient for species separation. Formation of mature ascocarps was infrequent, with only 24% of the 83 crosses producing viable ascospores. The majority of P. nomius strains contained a single mating-type gene (MAT1-1 or MAT1-2), but several strains contained both genes. MAT1-1/MAT1-2 strains were self-sterile and capable of mating with both MAT1-1 and MAT1-2 strains; hence P. nomius appears to be functionally heterothallic.
PLOS Pathogens | 2013
Geromy G. Moore; Jacalyn L. Elliott; Rakhi Singh; Bruce W. Horn; Joe W. Dorner; Eric A. Stone; S. Chulze; Germán Barros; Manjunath K. Naik; Graeme C. Wright; Kerstin Hell; Ignazio Carbone
Aflatoxins are produced by Aspergillus flavus and A. parasiticus in oil-rich seed and grain crops and are a serious problem in agriculture, with aflatoxin B1 being the most carcinogenic natural compound known. Sexual reproduction in these species occurs between individuals belonging to different vegetative compatibility groups (VCGs). We examined natural genetic variation in 758 isolates of A. flavus, A. parasiticus and A. minisclerotigenes sampled from single peanut fields in the United States (Georgia), Africa (Benin), Argentina (Córdoba), Australia (Queensland) and India (Karnataka). Analysis of DNA sequence variation across multiple intergenic regions in the aflatoxin gene clusters of A. flavus, A. parasiticus and A. minisclerotigenes revealed significant linkage disequilibrium (LD) organized into distinct blocks that are conserved across different localities, suggesting that genetic recombination is nonrandom and a global occurrence. To assess the contributions of asexual and sexual reproduction to fixation and maintenance of toxin chemotype diversity in populations from each locality/species, we tested the null hypothesis of an equal number of MAT1-1 and MAT1-2 mating-type individuals, which is indicative of a sexually recombining population. All samples were clone-corrected using multi-locus sequence typing which associates closely with VCG. For both A. flavus and A. parasiticus, when the proportions of MAT1-1 and MAT1-2 were significantly different, there was more extensive LD in the aflatoxin cluster and populations were fixed for specific toxin chemotype classes, either the non-aflatoxigenic class in A. flavus or the B1-dominant and G1-dominant classes in A. parasiticus. A mating type ratio close to 1∶1 in A. flavus, A. parasiticus and A. minisclerotigenes was associated with higher recombination rates in the aflatoxin cluster and less pronounced chemotype differences in populations. This work shows that the reproductive nature of the population (more sexual versus more asexual) is predictive of aflatoxin chemotype diversity in these agriculturally important fungi.
Frontiers in Microbiology | 2014
Geromy G. Moore
For most of the half century that aflatoxigenic species have been intensively studied, these molds were known only to reproduce asexually, with parasexuality found only in the laboratory between certain mutant strains. Therefore, the fairly recent discovery of their sexual (teleomorphic) states creates a new wrinkle in our understanding of the field behavior of these agriculturally significant fungi. Sex within populations of these fungi, and attendant genetic recombination, eventually may create difficulties for their control; and subsequently for the protection of important human and animal food supplies. Moreover, if fungal sex is a form of response to ecological and environmental stressors, then perhaps human influence and climate change could accelerate this phenomenon. This article will explore scientific research into sexuality and recombination in aflatoxigenic Aspergillus species; the potential impacts these phenomena could have on a popular method of pre-harvest prevention of aflatoxin contamination (i.e., use of non-aflatoxigenic A. flavus for biocontrol); and the outlook for maintaining control of aflatoxin contamination in an era of changing global climate.
Molecular Ecology | 2015
Rodrigo A. Olarte; Carolyn J. Worthington; Bruce W. Horn; Geromy G. Moore; Rakhi Singh; James T. Monacell; Joe W. Dorner; Eric A. Stone; De Yu Xie; Ignazio Carbone
Aspergillus flavus and A. parasiticus are the two most important aflatoxin‐producing fungi responsible for the contamination of agricultural commodities worldwide. Both species are heterothallic and undergo sexual reproduction in laboratory crosses. Here we examine the possibility of interspecific matings between A. flavus and A. parasiticus. These species can be distinguished morphologically and genetically, as well as by their mycotoxin profiles. Aspergillus flavus produces both B aflatoxins and cyclopiazonic acid (CPA), B aflatoxins or CPA alone, or neither mycotoxin; Aspergillus parasiticus produces B and G aflatoxins or the aflatoxin precursor O‐methylsterigmatocystin, but not CPA. Only four of forty‐five attempted interspecific crosses between opposite mating types of A. flavus and A. parasiticus were fertile and produced viable ascospores. Single ascospore strains from each cross were shown to be recombinant hybrids using multilocus genotyping and array comparative genome hybridization. Conidia of parents and their hybrid progeny were haploid and predominantly monokaryons and dikaryons based on flow cytometry. Multilocus phylogenetic inference showed that experimental hybrid progeny were grouped with naturally occurring A. flavus L strain and A. parasiticus. Higher total aflatoxin concentrations in some F1 progeny strains compared to midpoint parent aflatoxin levels indicate synergism in aflatoxin production; moreover, three progeny strains synthesized G aflatoxins that were not produced by the parents, and there was evidence of allopolyploidization in one strain. These results suggest that hybridization is an important diversifying force resulting in the genesis of novel toxin profiles in these agriculturally important fungi.
World Mycotoxin Journal | 2015
Kenneth C. Ehrlich; Geromy G. Moore; J.E. Mellon; Deepak Bhatnagar
Competition with Aspergillus flavus isolates incapable of aflatoxin production is currently the most widely used biocontrol method for reducing aflatoxin contamination in maize and cottonseed where aflatoxin contamination is a persistent problem for human and animal health. The method involves spreading non-aflatoxigenic A. flavus spores onto the field prior to harvest. How competition works is not fully understood. Current theories suggest that atoxigenic A. flavus either simply displaces aflatoxin-producing isolates or that competition is an active inhibition process that occurs when the fungi occupy the same locus on the plant. In this paper we describe several challenges that the biocontrol strategy should address before this practice is introduced worldwide. These include the need to better understand the diversity of A. flavus populations in the agricultural soil, the effects of climate change on both this diversity and on plant susceptibility, the ability of the introduced biocontrol strain to outc...
Genome Biology and Evolution | 2016
Geromy G. Moore; Brian M. Mack; Shannon B. Beltz; Matthew K. Gilbert
Aspergillus bombycis was first isolated from silkworm frass in Japan. It has been reportedly misidentified as A. nomius due to their macro-morphological and chemotype similarities. We sequenced the genome of the A. bombycis Type strain and found it to be comparable in size (37 Mb), as well as in numbers of predicted genes (12,266), to other sequenced Aspergilli. The aflatoxin gene cluster in this strain is similar in size and the genes are oriented the same as other B- + G-aflatoxin producing species, and this strain contains a complete but nonfunctional gene cluster for the production of cyclopiazonic acid. Our findings also showed that the A. bombycis Type strain contains a single MAT1-2 gene indicating that this species is likely heterothallic (self-infertile). This draft genome will contribute to our understanding of the genes and pathways necessary for aflatoxin synthesis as well as the evolutionary relationships of aflatoxigenic fungi.
Mycologia | 2012
Jeffrey W. Cary; Pamela Y. Harris-Coward; Kenneth C. Ehrlich; Geromy G. Moore; Qijian Wei; Deepak Bhatnagar
Within the Aspergillus parasiticus and A. flavus aflatoxin (AF) biosynthetic gene cluster the aflQ (ordA) and aflP (omtA) genes encode respectively an oxidoreductase and methyltransferase. These genes are required for the final steps in the conversion of sterigmatocystin (ST) to aflatoxin B1 (AFB1). Aspergillus nidulans harbors a gene cluster that produces ST, as the aflQ and aflP orthologs are either non-functional or absent in the genome. Aspergillus ochraceoroseus produces both AF and ST, and it harbors an AF/ST biosynthetic gene cluster that is organized much like the A. nidulans ST cluster. The A. ochraceoroseus cluster also does not contain aflQ or aflP orthologs. However the ability of A. ochraceoroseus to produce AF would indicate that functional aflQ and aflP orthologs are present within the genome. Utilizing degenerate primers based on conserved regions of the A. flavus aflQ gene and an A. nidulans gene demonstrating the highest level of homology to aflQ, a putative aflQ ortholog was PCR amplified from A. ochraceoroseus genomic DNA. The A. ochraceoroseus aflQ ortholog demonstrated 57% amino acid identity to A. flavus AflQ. Transformation of an O-methylsterigmatocystin (OMST)-accumulating A. parasiticus aflQ mutant with the putative A. ochraceoroseus aflQ gene restored AF production. Although the aflQ gene does not reside in the AF/ST cluster it appears to be regulated in a manner similar to other A. ochraceoroseus AF/ST cluster genes. Phylogenetic analysis of AflQ and AflQ-like proteins from a number of ST- and AF-producing Aspergilli indicates that A. ochraceoroseus might be ancestral to A. nidulans and A. flavus.