Gerrit van Meer
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gerrit van Meer.
Nature Reviews Molecular Cell Biology | 2008
Gerrit van Meer; Dennis R. Voelker; Gerald W. Feigenson
Throughout the biological world, a 30 Å hydrophobic film typically delimits the environments that serve as the margin between life and death for individual cells. Biochemical and biophysical findings have provided a detailed model of the composition and structure of membranes, which includes levels of dynamic organization both across the lipid bilayer (lipid asymmetry) and in the lateral dimension (lipid domains) of membranes. How do cells apply anabolic and catabolic enzymes, translocases and transporters, plus the intrinsic physical phase behaviour of lipids and their interactions with membrane proteins, to create the unique compositions and multiple functionalities of their individual membranes?
Cell | 1996
Ardy van Helvoort; Alexander J. Smith; Hein Sprong; Ingo Fritzsche; Alfred H. Schinkel; Piet Borst; Gerrit van Meer
The human MDR1 P-glycoprotein (Pgp) extrudes a variety of drugs across the plasma membrane. The homologous MDR3 Pgp is required for phosphatidylcholine secretion into bile. After stable transfection of epithelial LLC-PK1 cells, MDR1 and MDR3 Pgp were localized in the apical membrane. At 15 degrees C, newly synthesized short-chain analogs of various membrane lipids were recovered in the apical albumin-containing medium of MDR1 cells but not control cells. MDR inhibitors and energy depletion reduced apical release. MDR3 cells exclusively released a short-chain phosphatidylcholine. Since no vesicular secretion occurs at 15 degrees C, the short-chain lipids must have been translocated by the Pgps across the plasma membrane before extraction into the medium by the lipid-acceptor albumin.
Nature Reviews Molecular Cell Biology | 2004
Anthony H. Futerman; Gerrit van Meer
Lysosomal storage disorders, of which more than 40 are known, are caused by the defective activity of lysosomal proteins, which results in the intra-lysosomal accumulation of undegraded metabolites. Despite years of study of the genetic and molecular bases of lysosomal storage disorders, little is known about the events that lead from this intra-lysosomal accumulation to pathology. Here, we summarize the biochemistry of lysosomal storage disorders. We then discuss downstream cellular pathways that are potentially affected in these disorders and that might help us to delineate their pathological mechanisms.
Nature Reviews Molecular Cell Biology | 2001
Hein Sprong; Peter van der Sluijs; Gerrit van Meer
Cells determine the bilayer characteristics of different membranes by tightly controlling their lipid composition. Local changes in the physical properties of bilayers, in turn, allow membrane deformation, and facilitate vesicle budding and fusion. Moreover, specific lipids at specific locations recruit cytosolic proteins involved in structural functions or signal transduction. We describe here how the distribution of lipids is directed by proteins, and, conversely, how lipids influence the distribution and function of proteins.
Journal of Cell Science | 2004
Thomas Pomorski; Joost C. M. Holthuis; Andreas Herrmann; Gerrit van Meer
The various organellar membranes of eukaryotic cells display striking differences in the composition, leaflet distribution and transbilayer movement of their lipids. In membranes such as the endoplasmic reticulum, phospholipids can move readily across the bilayer, aided by membrane proteins that facilitate a passive equilibration of lipids between both membrane halves. In the plasma membrane, and probably also in the late Golgi and endosomal compartments, flip-flop of phospholipids is constrained and subject to a dynamic, ATP-dependent regulation that involves members of distinct protein families. Recent studies in yeast, parasites such as Leishmania, and mammalian cells have identified several candidates for lipid flippases, and whereas some of these serve a fundamental role in the release of lipids from cells, others appear to have unexpected and important functions in vesicular traffic: their activities are required to support vesicle formation in the secretory and endocytic pathways.
Current Opinion in Cell Biology | 2010
Frederick R. Maxfield; Gerrit van Meer
Despite its importance for mammalian cell biology and human health, there are many basic aspects of cholesterol homeostasis that are not well understood. Even for the well-characterized delivery of cholesterol to cells via lipoproteins, a novel regulatory mechanism has been discovered recently, involving a serum protein called PCSK9, which profoundly affects lipoproteins and their receptors. Cells can export cholesterol by processes that require the activity of ABC transporters, but the molecular mechanisms for cholesterol transport remain unclear. Cholesterol levels in different organelles vary by 5-10-fold, and the mechanisms for maintaining these differences are now partially understood. Several proteins have been proposed to play a role in the inter-organelle movement of cholesterol, but many aspects of the mechanisms for regulating intracellular transport and distribution of cholesterol remain to be worked out. The endoplasmic reticulum is the main organelle responsible for regulation of cholesterol synthesis, and careful measurements have shown that the proteins responsible for sterol sensing respond over a very narrow range of cholesterol concentrations to provide very precise, switch-like control over cholesterol synthesis.
Biochimica et Biophysica Acta | 2000
Gerrit van Meer; Joost C. M. Holthuis
Sphingolipids constitute a sizeable fraction of the membrane lipids in all eukaryotes and are indispensable for eukaryotic life. First of all, the involvement of sphingolipids in organizing the lateral domain structure of membranes appears essential for processes like protein sorting and membrane signaling. In addition, recognition events between complex glycosphingolipids and glycoproteins are thought to be required for tissue differentiation in higher eukaryotes and for other specific cell interactions. Finally, upon certain stimuli like stress or receptor activation, sphingolipids give rise to a variety of second messengers with effects on cellular homeostasis. All sphingolipid actions are governed by their local concentration. The intricate control of their intracellular topology by the proteins responsible for their synthesis, hydrolysis and intracellular transport is the topic of this review.
Cell | 1997
Howard Riezman; Philip G. Woodman; Gerrit van Meer; Mark Marsh
Cells regulate their developmental and functional programs through their interaction with the external milieu, which requires communication across the plasma membrane. The plasma membrane is constantly being remodeled by endocytosis allowing cells to control how they respond to external stimuli. Endocytosis also allows continuous sampling of the external environment, which is important for the uptake of micronutrients and for the cellular and organismal response to infectious agents. The importance of this process in human health merits its careful study and characterization. For the last nine years, a biannual European conference on endocytosis has been held in various locations. The fifth of these meetings was held September 13–18, in San Feliu de Guixols, a beautiful venue on the Costa Brava in Spain. Besides having the opportunity to scuba dive, the participants followed an interesting and ambitious schedule of oral and poster presentations on the molecular mechanisms involved in endocytosis and how these mechanisms relate to health and disease.
Trends in Cell Biology | 1998
Gerrit van Meer
The thin membrane of the endoplasmic reticulum matures into the thick plasma membrane in the Golgi apparatus. Along the way, the concentrations of cholesterol and sphingolipids increase. Here, Gerrit van Meer discusses how this phenomenon may reflect an intricate lipid-protein sorting machinery. Synthesis of sphingolipids, translocation across the Golgi membrane and lateral segregation into lumenal domains seem to be key events. In addition, signalling lipids indicate the lipid status of the Golgi and interact with proteins of the transport machinery to regulate membrane flux.
Journal of Cell Biology | 2001
Hein Sprong; Sophie Degroote; Tijs Claessens; Judith van Drunen; Viola Oorschot; Ben H.C. Westerink; Yoshio Hirabayashi; Judith Klumperman; Peter van der Sluijs; Gerrit van Meer
A;lthough glycosphingolipids are ubiquitously expressed and essential for multicellular organisms, surprisingly little is known about their intracellular functions. To explore the role of glycosphingolipids in membrane transport, we used the glycosphingolipid-deficient GM95 mouse melanoma cell line. We found that GM95 cells do not make melanin pigment because tyrosinase, the first and rate-limiting enzyme in melanin synthesis, was not targeted to melanosomes but accumulated in the Golgi complex. However, tyrosinase-related protein 1 still reached melanosomal structures via the plasma membrane instead of the direct pathway from the Golgi. Delivery of lysosomal enzymes from the Golgi complex to endosomes was normal, suggesting that this pathway is not affected by the absence of glycosphingolipids. Loss of pigmentation was due to tyrosinase mislocalization, since transfection of tyrosinase with an extended transmembrane domain, which bypassed the transport block, restored pigmentation. Transfection of ceramide glucosyltransferase or addition of glucosylsphingosine restored tyrosinase transport and pigmentation. We conclude that protein transport from Golgi to melanosomes via the direct pathway requires glycosphingolipids.