Gert Bange
University of Marburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gert Bange.
Biological Chemistry | 2009
Przemyslaw Grudnik; Gert Bange; Irmgard Sinning
Abstract Protein targeting by the signal recognition particle (SRP) is universally conserved and starts with the recognition of a signal sequence in the context of a translating ribosome. SRP54 and FtsY, two multidomain proteins with guanosine triphosphatase (GTPase) activity, are the central elements of the SRP system. They have to coordinate the presence of a signal sequence with the presence of a vacant translocation channel in the membrane. For coordination the two GTPases form a unique, nearly symmetric heterodimeric complex in which the activation of GTP hydrolysis plays a key role for membrane insertion of substrate proteins. Recent results are integrated in an updated perception of the order of events in SRP-mediated protein targeting.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Gert Bange; Nico Kümmerer; Christoph Engel; Gunes Bozkurt; Klemens Wild; Irmgard Sinning
Flagella are the bacterial organelles of motility and can play important roles in pathogenesis. Flagella biosynthesis requires the coordinated export of huge protein amounts from the cytosol to the nascent flagellar structure at the cell surface and employs a type III secretion system (T3SS). Here we show that the integral membrane protein FlhA from the gram-positive bacterium Bacillus subtilis acts as an adaptor for late export substrates at the T3SS. The major filament protein (flagellin) and the filament-cap protein (FliD) bind to the FlhA cytoplasmic domain (FlhA-C) only in complex with their cognate chaperones (FliS and FliT). To understand the molecular details of these interactions we determined the FlhA-C crystal structure at 2.3 Å resolution. FlhA-C consists of an N-terminal linker region, three subdomains with a novel fold, and a disordered region essential for the adaptor function. We show that the export protein FliJ associates with the linker region and modulates the binding properties of FlhA-C. While the interaction of FliD/FliT is enhanced, flagellin/FliS is not affected. FliJ also keeps FliT associated with FlhA-C and excess of FliT inhibits binding of FliD/FliT, suggesting that empty FliT chaperones stay associated with FliJ after export of FliD. Taken together, these results allow to propose a model that explains how the T3SS may switch from the stoichiometric export of FliD to the high-throughput secretion of flagellin.
Journal of Biological Chemistry | 2007
Richard Parlitz; Asa Eitan; Goran Stjepanovic; Liat Bahari; Gert Bange; Eitan Bibi; Irmgard Sinning
Escherichia coli membrane protein biogenesis is mediated by a signal recognition particle and its membrane-associated receptor (FtsY). Although crucial for its function, it is still not clear how FtsY interacts with the membrane. Analysis of the structure/function differences between severely truncated active (NG+1) and inactive (NG) mutants of FtsY enabled us to identify an essential membrane-interacting determinant. Comparison of the three-dimensional structures of the mutants, combined with site-directed mutagenesis, modeling, and liposome-binding assays, revealed that FtsY contains a conserved autonomous lipid-binding amphipathic α-helix at the N-terminal end of the N domain. Deletion experiments showed that this helix is essential for FtsY function in vivo, thus offering, for the first time, clear evidence for the functionally important, physiologically relevant interaction of FtsY with lipids.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Gunes Bozkurt; Goran Stjepanovic; Fabio Vilardi; Stefan Amlacher; Klemens Wild; Gert Bange; Vincenzo Favaloro; Karsten Rippe; Ed Hurt; Bernhard Dobberstein; Irmgard Sinning
Tail-anchored (TA) membrane proteins are involved in a variety of important cellular functions, including membrane fusion, protein translocation, and apoptosis. The ATPase Get3 (Asna1, TRC40) was identified recently as the endoplasmic reticulum targeting factor of TA proteins. Get3 consists of an ATPase and α-helical subdomain enriched in methionine and glycine residues. We present structural and biochemical analyses of Get3 alone as well as in complex with a TA protein, ribosome-associated membrane protein 4 (Ramp4). The ATPase domains form an extensive dimer interface that encloses 2 nucleotides in a head-to-head orientation and a zinc ion. Amide proton exchange mass spectrometry shows that the α-helical subdomain of Get3 displays considerable flexibility in solution and maps the TA protein-binding site to the α-helical subdomain. The non-hydrolyzable ATP analogue AMPPNP-Mg2+- and ADP-Mg2+-bound crystal structures representing the pre- and posthydrolysis states are both in a closed form. In the absence of a TA protein cargo, ATP hydrolysis does not seem to be possible. Comparison with the ADP·AlF4−-bound structure representing the transition state (Mateja A, et al. (2009) Nature 461:361–366) indicates how the presence of a TA protein is communicated to the ATP-binding site. In vitro membrane insertion studies show that recombinant Get3 inserts Ramp4 in a nucleotide- and receptor-dependent manner. Although ATP hydrolysis is not required for Ramp4 insertion per se, it seems to be required for efficient insertion. We postulate that ATP hydrolysis is needed to release Get3 from its receptor. Taken together, our results provide mechanistic insights into posttranslational targeting of TA membrane proteins by Get3.
Nature Communications | 2014
Christoph Leidig; Matthias Thoms; Iris Holdermann; Bettina Bradatsch; Otto Berninghausen; Gert Bange; Irmgard Sinning; Ed Hurt; Roland Beckmann
During eukaryotic ribosome biogenesis, nascent ribosomal RNA (rRNA) forms pre-ribosomal particles containing ribosomal proteins and assembly factors. Subsequently, these immature rRNAs are processed and remodelled. Little is known about the premature assembly states of rRNAs and their structural rearrangement during ribosome biogenesis. Using cryo-EM we characterize a pre-60S particle, where the 5S rRNA and its associated ribosomal proteins L18 and L5 (5S ribonucleoprotein (RNP)) are rotated by almost 180° when compared with the mature subunit. Consequently, neighbouring 25S rRNA helices that protrude from the base of the central protuberance are deformed. This altered topology is stabilized by nearby assembly factors (Rsa4 and Nog1), which were identified by fitting their three-dimensional structures into the cryo-EM density. We suggest that the 5S RNP performs a semicircular movement during 60S biogenesis to adopt its final position, fulfilling a chaperone-like function in guiding the flanking 25S rRNA helices of the central protuberance to their final topology.
Nature Structural & Molecular Biology | 2013
Christoph Leidig; Gert Bange; Jürgen Kopp; Stefan Amlacher; Ajay Aravind; Stephan Wickles; Gregor Witte; Ed Hurt; Roland Beckmann; Irmgard Sinning
Ribosome-associated chaperones act in early folding events during protein synthesis. Structural information is available for prokaryotic chaperones (such as trigger factor), but structural understanding of these processes in eukaryotes lags far behind. Here we present structural analyses of the eukaryotic ribosome-associated complex (RAC) from Saccharomyces cerevisiae and Chaetomium thermophilum, consisting of heat-shock protein 70 (Hsp70) Ssz1 and the Hsp40 Zuo1. RAC is an elongated complex that crouches over the ribosomal tunnel exit and seems to be stabilized in a distinct conformation by expansion segment ES27. A unique α-helical domain in Zuo1 mediates ribosome interaction of RAC near the ribosomal proteins L22e and L31e and ribosomal RNA helix H59. The crystal structure of the Ssz1 ATPase domain bound to ATP-Mg2+ explains its catalytic inactivity and suggests that Ssz1 may act before the RAC-associated chaperone Ssb. Our study offers insights into the interplay between RAC, the ER membrane–integrated Hsp40-type protein ERj1 and the signal-recognition particle.
Science | 2012
Dieter Kressler; Gert Bange; Yutaka Ogawa; Goran Stjepanovic; Bettina Bradatsch; Dagmar Pratte; Stefan Amlacher; Daniela Strauß; Yoshihiro Yoneda; Jun Katahira; Irmgard Sinning; Ed Hurt
Symportin Synchrony Ribosomes, the macromolecular machines responsible for protein synthesis, function in the cytoplasm but are assembled in the nucleus. Ribosomal proteins must be imported into the nucleus, but how this is coordinated with assembly is unclear. Kressler et al. (p. 666) report that two 5S rRNA binding proteins are coimported into the nucleus. They identify a transport adaptor, which they term symportin (Syo1), that binds simultaneously to Rpl5 and Rpl11. Syo1 also interacts with the import receptor Kap104, which facilitates import of the Syo1-Rpl5-Rpl11 complex. Synchronous nuclear transport may be more generally used to coordinate assembly processes. The transport adaptor symportin mediates stoichiometric import of a pair of ribosomal proteins. Ribosomal proteins are synthesized in the cytoplasm, before nuclear import and assembly with ribosomal RNA (rRNA). Little is known about coordination of nucleocytoplasmic transport with ribosome assembly. Here, we identify a transport adaptor, symportin 1 (Syo1), that facilitates synchronized coimport of the two 5S-rRNA binding proteins Rpl5 and Rpl11. In vitro studies revealed that Syo1 concomitantly binds Rpl5-Rpl11 and furthermore recruits the import receptor Kap104. The Syo1-Rpl5-Rpl11 import complex is released from Kap104 by RanGTP and can be directly transferred onto the 5S rRNA. Syo1 can shuttle back to the cytoplasm by interaction with phenylalanine-glycine nucleoporins. X-ray crystallography uncovered how the α-solenoid symportin accommodates the Rpl5 amino terminus, normally bound to 5S rRNA, in an extended groove. Symportin-mediated coimport of Rpl5-Rpl11 could ensure coordinated and stoichiometric incorporation of these proteins into pre-60S ribosomes.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Gert Bange; Georg Petzold; Klemens Wild; Richard Parlitz; Irmgard Sinning
Flagella are well characterized as the organelles of locomotion and allow bacteria to react to environmental changes. The assembly of flagella is a multistep process and relies on a complex type III export machinery located in the cytoplasmic membrane. The FlhF protein is essential for the placement and assembly of polar flagella and has been classified as a signal-recognition particle (SRP)-type GTPase. SRP GTPases appeared early in evolution and form a unique subfamily within the guanine nucleotide binding proteins with only three members: the signal sequence-binding protein SRP54, the SRP receptor FtsY, and FlhF. We report the crystal structures of FlhF from Bacillus subtilis in complex with GTP and GMPPNP. FlhF shares SRP GTPase-specific features such as the presence of an N-terminal α-helical domain and the I-box insertion. It forms a symmetric homodimer sequestering a composite active site that contains two head-to-tail arranged nucleotides similar to the heterodimeric SRP-targeting complex. However, significant differences to the GTPases of SRP and the SRP receptor include the formation of a stable homodimer with GTP as well as severe modifications and even the absence of motifs involved in regulation of the other two SRP GTPases. Our results provide insights into SRP GTPases and their roles in two fundamentally different protein-targeting routes that both rely on efficient protein delivery to a secretion channel.
FEBS Letters | 2007
Eva Kowalinski; Gert Bange; Bettina Bradatsch; Ed Hurt; Klemens Wild; Irmgard Sinning
The ErbB‐3 receptor binding protein (Ebp1) is a member of the proliferation‐associated 2G4 (PA2G4) family implicated in regulation of cell growth and differentiation. Here, we report the crystal structure of the human Ebp1 at 1.6 Å resolution. The protein has the conserved pita bread fold of methionine aminopeptidases, but without the characteristic enzymatic activity. Moreover, Ebp1 is known to interact with a number of proteins and RNAs involved in either transcription regulation or translation control. The structure provides insights in how Ebp1 discriminates between its different interaction partners.
Molecular Microbiology | 2016
Wieland Steinchen; Gert Bange
The alarmones (p)ppGpp are important second messengers that orchestrate pleiotropic adaptations of bacteria and plant chloroplasts in response to starvation and stress. Here, we review our structural and mechanistic knowledge on (p)ppGpp metabolism including their synthesis, degradation and interconversion by a highly diverse set of enzymes. Increasing structural information shows how (p)ppGpp interacts with an incredibly diverse set of different targets that are essential for replication, transcription, translation, ribosome assembly and metabolism. This raises the question how the chemically rather simple (p)ppGpp is able to interact with these different targets? Structural analysis shows that the diversity of (p)ppGpp interaction with cellular targets critically relies on the conformational flexibility of the 3′ and 5′ phosphate moieties allowing alarmones to efficiently modulate the activity of target structures in a broad concentration range. Current approaches in the design of (p)ppGpp‐analogs as future antibiotics might be aided by the comprehension of conformational flexibility exhibited by the magic dancers (p)ppGpp.