Kai M. Thormann
University of Giessen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kai M. Thormann.
Journal of Bacteriology | 2005
Kai M. Thormann; Renée M. Saville; Soni Shukla; Alfred M. Spormann
Active detachment of cells from microbial biofilms is a critical yet poorly understood step in biofilm development. We discovered that detachment of cells from biofilms of Shewanella oneidensis MR-1 can be induced by arresting the medium flow in a hydrodynamic biofilm system. Induction of detachment was rapid, and substantial biofilm dispersal started as soon as 5 min after the stop of flow. We developed a confocal laser scanning microscopy-based assay to quantify detachment. The extent of biomass loss was found to be dependent on the time interval of flow stop and on the thickness of the biofilm. Up to 80% of the biomass of 16-h-old biofilms could be induced to detach. High-resolution microscopy studies revealed that detachment was associated with an overall loosening of the biofilm structure and a release of individual cells or small cell clusters. Swimming motility was not required for detachment. Although the loosening of cells from the biofilm structure was observed evenly throughout thin biofilms, the most pronounced detachment in thicker biofilms occurred in regions exposed to the flow of medium, suggesting a metabolic control of detachability. Deconvolution of the factors associated with the stop of medium flow revealed that a sudden decrease in oxygen tension is the predominant trigger for initiating detachment of individual cells. In contrast, carbon limitation did not trigger any substantial detachment, suggesting a physiological link between oxygen sensing or metabolism and detachment. In-frame deletions were introduced into genes encoding the known and putative global transcriptional regulators ArcA, CRP, and EtrA (FNR), which respond to changes in oxygen tension in S. oneidensis MR-1. Biofilms of null mutants in arcA and crp were severely impacted in the stop-of-flow-induced detachment response, suggesting a role for these genes in regulation of detachment. In contrast, an DeltaetrA mutant displayed a variable detachment phenotype. From this genetic evidence we conclude that detachment is a biologically controlled process and that a rapid change in oxygen concentration is a critical factor in detachment and, consequently, in dispersal of S. oneidensis cells from biofilms. Similar mechanisms might also operate in other bacteria.
Journal of Bacteriology | 2004
Kai M. Thormann; Renée M. Saville; Soni Shukla; Dale A. Pelletier; Alfred M. Spormann
Shewanella oneidensis MR-1 is a facultative Fe(III)- and Mn(IV)-reducing microorganism and serves as a model for studying microbially induced dissolution of Fe or Mn oxide minerals as well as biogeochemical cycles. In soil and sediment environments, S. oneidensis biofilms form on mineral surfaces and are critical for mediating the metabolic interaction between this microbe and insoluble metal oxide phases. In order to develop an understanding of the molecular basis of biofilm formation, we investigated S. oneidensis biofilms developing on glass surfaces in a hydrodynamic flow chamber system. After initial attachment, growth of microcolonies and lateral spreading of biofilm cells on the surface occurred simultaneously within the first 24 h. Once surface coverage was almost complete, biofilm development proceeded with extensive vertical growth, resulting in formation of towering structures giving rise to pronounced three-dimensional architecture. Biofilm development was found to be dependent on the nutrient conditions, suggesting a metabolic control. In global transposon mutagenesis, 173 insertion mutants out of 15,000 mutants screened were identified carrying defects in initial attachment and/or early stages in biofilm formation. Seventy-one of those mutants exhibited a nonswimming phenotype, suggesting a role of swimming motility or motility elements in biofilm formation. Disruption mutations in motility genes (flhB, fliK, and pomA), however, did not affect initial attachment but affected progression of biofilm development into pronounced three-dimensional architecture. In contrast, mutants defective in mannose-sensitive hemagglutinin type IV pilus biosynthesis and in pilus retraction (pilT) showed severe defects in adhesion to abiotic surfaces and biofilm formation, respectively. The results provide a basis for understanding microbe-mineral interactions in natural environments.
Molecular Microbiology | 2009
Anja Paulick; Andrea Koerdt; Jürgen Lassak; Stuart Huntley; Ina Wilms; Franz Narberhaus; Kai M. Thormann
The Gram‐negative metal ion‐reducing bacterium Shewanella oneidensis MR‐1 is motile by means of a single polar flagellum. We identified two potential stator systems, PomAB and MotAB, each individually sufficient as a force generator to drive flagellar rotation. Physiological studies indicate that PomAB is sodium‐dependent while MotAB is powered by the proton motive force. Flagellar function mainly depends on the PomAB stator; however, the presence of both stator systems under low‐sodium conditions results in a faster swimming phenotype. Based on stator homology analysis we speculate that MotAB has been acquired by lateral gene transfer as a consequence of adaptation to a low‐sodium environment. Expression analysis at the single cell level showed that both stator systems are expressed simultaneously. An active PomB–mCherry fusion protein effectively localized to the flagellated cell pole in 70–80% of the population independent of sodium concentrations. In contrast, polar localization of MotB–mCherry increased with decreasing sodium concentrations. In the absence of the Pom stator, MotB–mCherry localized to the flagellated cell pole independently of the sodium concentration but was rapidly displaced upon expression of PomAB. We propose that selection of the stator occurs at the level of protein localization in response to sodium concentrations.
Journal of Bacteriology | 2002
Kai M. Thormann; Lothar Feustel; Karin Lorenz; Stephan Nakotte; Peter Dürre
The sol operon of Clostridium acetobutylicum is the essential transcription unit for formation of the solvents butanol and acetone. The recent proposal that transcriptional regulation of this operon is controlled by the repressor Orf5/SolR (R. V. Nair, E. M. Green, D. E. Watson, G. N. Bennett, and E. T. Papoutsakis, J. Bacteriol. 181:319-330, 1999) was found to be incorrect. Instead, regulation depends on activation, most probably by the multivalent transcription factor Spo0A. The operon is transcribed from a single promoter. A second signal identified in primer extension studies results from mRNA processing and can be observed only in the natural host, not in a heterologous host. The first structural gene in the operon (adhE, encoding a bifunctional butyraldehyde/butanol dehydrogenase) is translated into two different proteins, the mature AdhE enzyme and the separate butanol dehydrogenase domain. The promoter of the sol operon is preceded by three imperfect repeats and a putative Spo0A-binding motif, which partially overlaps with repeat 3 (R3). Reporter gene analysis performed with the lacZ gene of Thermoanaerobacterium thermosulfurigenes and targeted mutations of the regulatory region revealed that the putative Spo0A-binding motif, R3, and R1 are essential for control. The data obtained also indicate that an additional activator protein is involved.
The ISME Journal | 2011
Julia Gödeke; Kristina Paul; Jürgen Lassak; Kai M. Thormann
Shewanella oneidensis MR-1 is capable of forming highly structured surface-attached communities. By DNase I treatment, we demonstrated that extracellular DNA (eDNA) serves as a structural component in all stages of biofilm formation under static and hydrodynamic conditions. We determined whether eDNA is released through cell lysis mediated by the three prophages LambdaSo, MuSo1 and MuSo2 that are harbored in the genome of S. oneidensis MR-1. Mutant analyses and infection studies revealed that all three prophages may individually lead to cell lysis. However, only LambdaSo and MuSo2 form infectious phage particles. Phage release and cell lysis already occur during early stages of static incubation. A mutant devoid of the prophages was significantly less prone to lysis in pure culture. In addition, the phage-less mutant was severely impaired in biofilm formation through all stages of development, and three-dimensional growth occurred independently of eDNA as a structural component. Thus, we suggest that in S. oneidensis MR-1 prophage-mediated lysis results in the release of crucial biofilm-promoting factors, in particular eDNA.
PLOS ONE | 2010
Andrea Koerdt; Julia Gödeke; Jürgen Berger; Kai M. Thormann; Sonja-Verena Albers
Background Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments. Methodology We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells. Conclusion The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.
Applied and Environmental Microbiology | 2010
Jürgen Lassak; Anna-Lena Henche; Lucas Binnenkade; Kai M. Thormann
ABSTRACT The availability of oxygen is a major environmental factor for many microbes, in particular for bacteria such as Shewanella species, which thrive in redox-stratified environments. One of the best-studied systems involved in mediating the response to changes in environmental oxygen levels is the Arc two-component system of Escherichia coli, consisting of the sensor kinase ArcB and the cognate response regulator ArcA. An ArcA ortholog was previously identified in Shewanella, and as in Escherichia coli, Shewanella ArcA is involved in regulating the response to shifts in oxygen levels. Here, we identified the hybrid sensor kinase SO_0577, now designated ArcS, as the previously elusive cognate sensor kinase of the Arc system in Shewanella oneidensis MR-1. Phenotypic mutant characterization, transcriptomic analysis, protein-protein interaction, and phosphotransfer studies revealed that the Shewanella Arc system consists of the sensor kinase ArcS, the single phosphotransfer domain protein HptA, and the response regulator ArcA. Phylogenetic analyses suggest that HptA might be a relict of ArcB. Conversely, ArcS is substantially different with respect to overall sequence homologies and domain organizations. Thus, we speculate that ArcS might have adopted the role of ArcB after a loss of the original sensor kinase, perhaps as a consequence of regulatory adaptation to a redox-stratified environment.
Journal of Bacteriology | 2015
Arun Nanda; Kai M. Thormann; Julia Frunzke
Bacteriophages and genetic elements, such as prophage-like elements, pathogenicity islands, and phage morons, make up a considerable amount of bacterial genomes. Their transfer and subsequent activity within the hosts genetic circuitry have had a significant impact on bacterial evolution. In this review, we consider what underlying mechanisms might cause the spontaneous activity of lysogenic phages in single bacterial cells and how the spontaneous induction of prophages can lead to competitive advantages for and influence the lifestyle of bacterial populations or the virulence of pathogenic strains.
Microbiology | 2010
Kai M. Thormann; Anja Paulick
Many bacteria are motile by means of flagella, semi-rigid helical filaments rotated at the filaments base and energized by proton or sodium-ion gradients. Torque is created between the two major components of the flagellar motor: the rotating switch complex and the cell-wall-associated stators, which are arranged in a dynamic ring-like structure. Being motile provides a survival advantage to many bacteria, and thus the flagellar motor should work optimally under a wide range of environmental conditions. Recent studies have demonstrated that numerous species possess a single flagellar system but have two or more individual stator systems that contribute differentially to flagellar rotation. This review describes recent findings on rotor-stator interactions, on the role of different stators, and on how stator selection could be regulated. An emerging model suggests that bacterial flagellar motors are dynamic and can be tuned by stator swapping in response to different environmental conditions.
Environmental Microbiology | 2014
Maria Zweig; Sabine Schork; Andrea Koerdt; Katja Siewering; Claus Sternberg; Kai M. Thormann; Sonja-Verena Albers; Søren Molin; Chris van der Does
Neisseria gonorrhoeae is an obligate human pathogen that colonizes the genital tract and causes gonorrhoea. Neisseria gonorrhoeae can form biofilms during natural cervical infections, on glass and in continuous flow-chamber systems. These biofilms contain large amounts of extracellular DNA, which plays an important role in biofilm formation. Many clinical isolates contain a gonococcal genetic island that encodes a type IV secretion system (T4SS). The T4SS of N. gonorrhoeae strain MS11 secretes ssDNA directly into the medium. Biofilm formation, studied in continuous flow-chamber systems by confocal laser scanning microscopy (CLSM), was strongly reduced, especially in the initial phases of biofilm formation, in the presence of Exonuclease I, which specifically degrades ssDNA or in a ΔtraB strain that does not secrete ssDNA. To specifically detect ssDNA in biofilms using CLSM, a novel method was developed in which thermostable fluorescently labelled ssDNA- and ss/dsDNA-binding proteins were used to visualize ssDNA and total DNA in biofilms and planktonic cultures. Remarkably, mainly dsDNA was detected in biofilms of the ssDNA secreting strain. We conclude that the secreted ssDNA facilitates initial biofilm formation, but that the secreted ssDNA is not retained in mature biofilms.