Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gert L. van Dijken is active.

Publication


Featured researches published by Gert L. van Dijken.


Science | 2012

Massive phytoplankton blooms under Arctic Sea ice

Kevin R. Arrigo; Donald K. Perovich; Robert S. Pickart; Zachary W. Brown; Gert L. van Dijken; Kate E. Lowry; Matthew M. Mills; Molly A. Palmer; William M. Balch; Frank Bahr; Nicholas R. Bates; Claudia R. Benitez-Nelson; Bruce C. Bowler; Emily F. Brownlee; Jens K. Ehn; Karen E. Frey; Rebecca Garley; Samuel R. Laney; Laura C. Lubelczyk; Jeremy T. Mathis; A. Matsuoka; B. Greg Mitchell; G. W. K. Moore; E. Ortega-Retuerta; Sharmila Pal; Chris Polashenski; Rick A. Reynolds; Brian Schieber; Heidi M. Sosik; Michael Stephens

In midsummer, diatoms have taken advantage of thinning ice cover to feed in nutrient-rich waters. Phytoplankton blooms over Arctic Ocean continental shelves are thought to be restricted to waters free of sea ice. Here, we document a massive phytoplankton bloom beneath fully consolidated pack ice far from the ice edge in the Chukchi Sea, where light transmission has increased in recent decades because of thinning ice cover and proliferation of melt ponds. The bloom was characterized by high diatom biomass and rates of growth and primary production. Evidence suggests that under-ice phytoplankton blooms may be more widespread over nutrient-rich Arctic continental shelves and that satellite-based estimates of annual primary production in these waters may be underestimated by up to 10-fold.


Geophysical Research Letters | 2002

Ecological impact of a large Antarctic iceberg

Kevin R. Arrigo; Gert L. van Dijken; David G. Ainley; Mark A. Fahnestock; Thorsten Markus

[1] Satellite imagery has been used to document for the first time the potential for large icebergs to substantially alter the dynamics of a marine ecosystem. The B-15 iceberg (∼10,000 km 2 ), which calved off the Ross Ice Shelf in the biologically productive southwestern Ross Sea, Antarctica, restricted the normal drift of pack ice, resulting in heavier spring/summer pack ice cover than previously recorded. Extensive ice cover reduced both the area suitable for phytoplankton growth and the length of the algal growing season. Consequently, primary productivity throughout the region was >40% below normal, which changed both the abundance and behavior of upper trophic level organisms.


Biochimica et Biophysica Acta | 2008

Alternative photosynthetic electron flow to oxygen in marine Synechococcus

Shaun Bailey; Anastasios Melis; Katherine R. M. Mackey; Pierre Cardol; Giovanni Finazzi; Gert L. van Dijken; Gry Mine Berg; Kevin R. Arrigo; Jeff Shrager; Arthur R. Grossman

Cyanobacteria dominate the worlds oceans where iron is often barely detectable. One manifestation of low iron adaptation in the oligotrophic marine environment is a decrease in levels of iron-rich photosynthetic components, including the reaction center of photosystem I and the cytochrome b6f complex [R.F. Strzepek and P.J. Harrison, Photosynthetic architecture differs in coastal and oceanic diatoms, Nature 431 (2004) 689-692.]. These thylakoid membrane components have well characterised roles in linear and cyclic photosynthetic electron transport and their low abundance creates potential impediments to photosynthetic function. Here we show that the marine cyanobacterium Synechococcus WH8102 exhibits significant alternative electron flow to O2, a potential adaptation to the low iron environment in oligotrophic oceans. This alternative electron flow appears to extract electrons from the intersystem electron transport chain, prior to photosystem I. Inhibitor studies demonstrate that a propyl gallate-sensitive oxidase mediates this flow of electrons to oxygen, which in turn alleviates excessive photosystem II excitation pressure that can often occur even at relatively low irradiance. These findings are also discussed in the context of satisfying the energetic requirements of the cell when photosystem I abundance is low.


Paleoceanography | 2003

A comparison between excess barium and barite as indicators of carbon export

Meagan Eagle; Adina Paytan; Kevin R. Arrigo; Gert L. van Dijken; Richard W. Murray

[1] Since Dymond et al. [1992] proposed the paleoproductivity algorithm based on ‘‘Bio-Ba,’’ which relies on a strong correlation between Ba and organic carbon fluxes in sediment traps, this proxy has been applied in many paleoproductivity studies. Barite, the main carrier of particulate barium in the water column and the phase associated with carbon export, has also been suggested as a reliable paleoproductivity proxy in some locations. We demonstrate that Baexcess (total barium minus the fraction associated with terrigenous material) frequently overestimates Babarite (barium associated with the mineral barite), most likely due to the inclusion of barium from phases other than barite and terrigenous silicates (e.g., carbonate, organic matter, opal, Fe-Mn oxides, and hydroxides). A comparison between overlying oceanic carbon export and carbon export derived from Baexcess shows that the Dymond et al. [1992] algorithm frequently underestimates carbon export but is still a useful carbon export indicator if all caveats are considered before the algorithm is applied. Babarite accumulation rates from a wide range of core top sediments from different oceanic settings are highly correlated to surface ocean 14 C and Chlorophyll a measurements of primary production. This relationship varies by ocean basin, but with the application of the appropriate f ratio to 14 C and Chlorophyll a primary production estimates, the plot of Babarite accumulation and carbon export for the equatorial Pacific, Atlantic, and Southern Ocean converges to a global relationship that can be used to reconstruct paleo carbon export. INDEX TERMS: 3022 Marine Geology and Geophysics: Marine sediments—processes and transport; 4267 Oceanography: General: Paleoceanography; 4825 Oceanography: Biological and Chemical: Geochemistry; KEYWORDS: paleoproductivity, barite, export production, excess barium, marine sediments Citation: Eagle, M., A. Paytan, K. R. Arrigo, G. van Dijken, and R. W. Murray, A comparison between excess barium and barite as indicators of carbon export, Paleoceanography, 18(1), 1021, doi:10.1029/2002PA000793, 2003.


Integrative and Comparative Biology | 2010

Photophysiology in two major southern ocean phytoplankton taxa: photosynthesis and growth of Phaeocystis antarctica and Fragilariopsis cylindrus under different irradiance levels.

Kevin R. Arrigo; Matthew M. Mills; Lindsey R. Kropuenske; Gert L. van Dijken; Anne-Carlijn Alderkamp; Dale H. Robinson

The Ross Sea, Antarctica, supports two distinct populations of phytoplankton, one that grows well in sea ice and blooms in the shallow mixed layers of the Western marginal ice zone and the other that can be found in sea ice but thrives in the deeply mixed layers of the Ross Sea. Dominated by diatoms (e.g. Fragilariopsis cylindrus) and the prymnesiophyte Phaeocystis antarctica, respectively, the processes leading to the development of these different phytoplankton assemblages are not well known. The goal of this article was to gain a better understanding of the photophysiological characteristics that allow each taxon to dominate its specific habitat. Cultures of F. cylindrus and P. antarctica were each grown semi-continuously at four different constant irradiances (5, 25, 65, and 125 µmol quanta/m2/s). Fragilariopsis cylindrus produced far less photosynthetic pigment per cell than did P. antarctica but much more photoprotective pigment. Fragilariopsis cylindrus also exhibited substantially lower rates of photosynthesis and growth but also was far less susceptible to photoinhibition of cell growth. Excess photosynthetic capacity, a measure of the ability of phytoplankton to exploit variable light environments, was significantly higher in both strains of P. antarctica than in F. cylindrus. The combination of these characteristics suggests that F. cylindrus has a competitive advantage under conditions where mixed layers are shallow and light levels are relatively constant and high. In contrast, P. antarctica should dominate waters where mixed layers are deep and light levels are variable. These results are consistent with distributions of phytoplankton in the Ross Sea and suggest that light is the primary factor determining composition of phytoplankton communities.


Journal of Geophysical Research | 2015

Environmental controls of marine productivity hot spots around Antarctica

Kevin R. Arrigo; Gert L. van Dijken; Aaron L. Strong

Antarctic coastal polynyas are biologically rich ecosystems that support large populations of mammals and birds and are globally significant sinks of atmospheric carbon dioxide. To support local phytoplankton blooms, these highly productive ecosystems require a large input of iron (Fe), the sources of which are poorly known. Here we assess the relative importance of six different environmental factors in controlling the amount of phytoplankton biomass and rates of net primary production (NPP) in 46 coastal polynyas around Antarctica. Data presented here suggest that melting ice shelves are a primary supplier of Fe to coastal polynyas, with basal melt rates explaining 59% of the between-polynya variance in mean chlorophyll a (Chl a) concentration. In a multiple regression analysis, which explained 78% of the variance in chlorophyll a (Chl a) between polynyas, basal melt rate explained twice as much of the variance as the next most important variable. Fe upwelled from sediments, which is partly controlled by continental shelf width, was also important in some polynyas. Of secondary importance to phytoplankton abundance and NPP were sea surface temperature and polynya size. Surprisingly, differences in light availability and the length of the open water season explained little or none of the variance in either Chl a or NPP between polynyas. If the productivity of coastal polynyas is indeed sensitive to the release of Fe from melting ice shelves, future changes in ice shelf melt rates could dramatically influence Antarctic coastal ecosystems and the ability of continental shelf waters to sequester atmospheric carbon dioxide.


Journal of Phycology | 2010

Strategies and rates of photoacclimation in two major Southern Ocean phytoplankton taxa: Phaeocystis antarctica (Haptophyta) and Fragilariopsis cylindrus (Bacillariophyceae)

Lindsey R. Kropuenske; Matthew M. Mills; Gert L. van Dijken; Anne-Carlijn Alderkamp; Gry Mine Berg; Dale H. Robinson; Nicholas A. Welschmeyer; Kevin R. Arrigo

We investigated rates and mechanisms of photoacclimation in cultures of Phaeocystis antarctica G. Karst. and Fragilariopsis cylindrus (Grunow) Willi Krieg, phytoplankton taxa that each dominate distinct areas of the Ross Sea, Antarctica. Both P. antarctica and F. cylindrus acclimated to increases in irradiance by reducing the effective size of the pigment antenna (σPSII) via xanthophyll‐cycle activity and reductions in chl. While enhanced photoprotection facilitated increases in specific growth rate and eventually led to higher light‐saturated photosynthetic rates (Pcellm) in P. antarctica, increases in those variables were much smaller in F. cylindrus. In response to a lower irradiance, relaxation of xanthophyll‐cycle activity led to an increase in σPSII in both taxa, which occurred much more slowly in F. cylindrus. A surprising increase in specific growth rate over the first 36 h of acclimation in P. antarctica may have facilitated the significant reductions in Pcellm observed in that taxon. In general, P. antarctica acclimated more quickly to changes in irradiance than F. cylindrus, exhibited a wider range in photosynthetic rates, but was more susceptible to photoinhibition. This acclimation strategy is consistent with growth in deeply mixed water columns with variations in irradiance that allow time for repair. In contrast, the slower acclimation rates, extensive photoprotection, and low photoinhibition exhibited by F. cylindrus suggest that it does not require the same period for repair as P. antarctica and is best suited for growth in habitats with relatively uniform irradiance, such as shallow mixed layers or sea ice.


Journal of Phycology | 2010

PHOTOPHYSIOLOGY IN TWO SOUTHERN OCEAN PHYTOPLANKTON TAXA: PHOTOSYNTHESIS OF PHAEOCYSTIS ANTARCTICA (PRYMNESIOPHYCEAE) AND FRAGILARIOPSIS CYLINDRUS (BACILLARIOPHYCEAE) UNDER SIMULATED MIXED-LAYER IRRADIANCE1

Matthew M. Mills; Lindsey R. Kropuenske; Gert L. van Dijken; Anne-Carlijn Alderkamp; Gry Mine Berg; Dale H. Robinson; Nicholas A. Welschmeyer; Kevin R. Arrigo

In the Ross Sea, the prymnesiophyte Phaeocystis antarctica G. Karst. dominates deeply mixed water columns, while diatoms dominate shallower mixed layers. Understanding what controls the dynamics of these two phytoplankton taxa is essential because they dominate virtually all coastal polar waters, have different nutrient utilization characteristics, and support dissimilar food webs. We cultured two strains of P. antarctica and one strain of the diatom Fragilariopsis cylindrus (Grunow) Willi Krieg under three dynamic irradiance regimes that simulated different mixed‐layer depths and measured their photosynthetic characteristics, cellular pigment concentrations, and cellular carbon and nitrogen content. In both species, chl a–normalized maximum carbon uptake rate (Pm* ) and specific growth rate were highest in the deeply mixed treatment that had a dark period. In all irradiance treatments, both (Pm* ) and photosynthetic efficiency (α*) were greater for the two P. antarctica strains than for the F. cylindrus strain. In contrast, P. antarctica strains were more susceptible to photoinhibition (β*) than the F. cylindrus strain. When photosynthetic rates of each phytoplankton taxon were normalized by cellular particulate organic carbon (POC), the difference in the maximal photosynthetic rate () was generally reduced. In the dynamic irradiance treatment that simulated the shallowest mixed‐layer irradiance, all three phytoplankton had similar ; however, the diatom had a 2‐fold higher POC‐normalized photosynthetic efficiency (αC). Finally, we performed calculations using the measured POC‐normalized photosynthetic parameters to show that αC and can play a greater role than βC in determining the competitive outcome between P. antarctica and F. cylindrus in both shallow and deep mixed‐layer environments of the Ross Sea.


PLOS ONE | 2014

Productivity in the Barents Sea - Response to Recent Climate Variability

Padmini Dalpadado; Kevin R. Arrigo; Solfrid Sætre Hjøllo; Francisco Rey; Randi Ingvaldsen; Erik Sperfeld; Gert L. van Dijken; Leif Christian Stige; Are Olsen; Geir Ottersen

The temporal and spatial dynamics of primary and secondary biomass/production in the Barents Sea since the late 1990s are examined using remote sensing data, observations and a coupled physical-biological model. Field observations of mesozooplankton biomass, and chlorophyll a data from transects (different seasons) and large-scale surveys (autumn) were used for validation of the remote sensing products and modeling results. The validation showed that satellite data are well suited to study temporal and spatial dynamics of chlorophyll a in the Barents Sea and that the model is an essential tool for secondary production estimates. Temperature, open water area, chlorophyll a, and zooplankton biomass show large interannual variations in the Barents Sea. The climatic variability is strongest in the northern and eastern parts. The moderate increase in net primary production evident in this study is likely an ecosystem response to changes in climate during the same period. Increased open water area and duration of open water season, which are related to elevated temperatures, appear to be the key drivers of the changes in annual net primary production that has occurred in the northern and eastern areas of this ecosystem. The temporal and spatial variability in zooplankton biomass appears to be controlled largely by predation pressure. In the southeastern Barents Sea, statistically significant linkages were observed between chlorophyll a and zooplankton biomass, as well as between net primary production and fish biomass, indicating bottom-up trophic interactions in this region.


Journal of Phycology | 2012

The effect of iron limitation on the photophysiology of Phaeocystis antarctica (Prymnesiophyceae) and Fragilariopsis cylindrus (Bacillariophyceae) under dynamic irradiance

Anne-Carlijn Alderkamp; Gemma Kulk; Anita Buma; Ronald J. W. Visser; Gert L. van Dijken; Matthew M. Mills; Kevin R. Arrigo

The effects of iron limitation on photoacclimation to dynamic irradiance were studied in Phaeocystis antarctica G. Karst. and Fragilariopsis cylindrus (Grunow) W. Krieg. in terms of growth rate, photosynthetic parameters, pigment composition, and fluorescence characteristics. Under dynamic light conditions mimicking vertical mixing below the euphotic zone, P. antarctica displayed higher growth rates than F. cylindrus both under iron (Fe)–replete and Fe‐limiting conditions. Both species showed xanthophyll de‐epoxidation that was accompanied by low levels of nonphotochemical quenching (NPQ) during the irradiance maximum of the light cycle. The potential for NPQ at light levels corresponding to full sunlight was substantial in both species and increased under Fe limitation in F. cylindrus. Although the decline in Fv/Fm under Fe limitation was similar in both species, the accompanying decrease in the maximum rate of photosynthesis and growth rate was much stronger in F. cylindrus. Analysis of the electron transport rates through PSII and on to carbon (C) fixation revealed a large potential for photoprotective cyclic electron transport (CET) in F. cylindrus, particularly under Fe limitation. Probably, CET aided the photoprotection in F. cylindrus, but it also reduced photosynthetic efficiency at higher light intensities. P. antarctica, on the other hand, was able to efficiently use electrons flowing through PSII for C fixation at all light levels, particularly under Fe limitation. Thus, Fe limitation enhanced the photophysiological differences between P. antarctica and diatoms, supporting field observations where P. antarctica is found to dominate deeply mixed water columns, whereas diatoms dominate shallower mixed layers.

Collaboration


Dive into the Gert L. van Dijken's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert S. Pickart

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anita Buma

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge