Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geun-Hyoung Ha is active.

Publication


Featured researches published by Geun-Hyoung Ha.


Cancer Research | 2007

p53 Activation in Response to Mitotic Spindle Damage Requires Signaling via BubR1-Mediated Phosphorylation

Geun-Hyoung Ha; Kwan-Hyuck Baek; Hyun-Soo Kim; Sook-Jung Jeong; Chang-Min Kim; Frank McKeon; Chang-Woo Lee

The mitotic spindle checkpoint plays a crucial role in regulating accurate chromosome segregation and preventing the adaptation of multiploid progeny cells. Recent reports have indicated that the induction of p53 by mitotic checkpoint activation is essential for protecting cells from abnormal chromosome ploidization caused by mitotic failure. However, although studies have shown that p53 deficiencies arrest mitosis, compromise apoptosis, and may cause profound aneuploidy, the molecular mechanisms leading to p53 induction following mitotic checkpoint activation remain unknown. Here, we show that the BubR1 mitotic checkpoint kinase interacts with p53 both in vitro and in vivo, with higher levels of interaction in mitotic cells. This interaction contributes to p53 phosphorylation. Silencing of BubR1 expression reduces the phosphorylation and stability of p53, whereas exogenous introduction of BubR1 proteins into BubR1-depleted cells recovers p53 stability. In addition, inhibition of BubR1 expression in the presence of a microtubule inhibitor accelerates chromosomal instability and polyploidy in p53-null cells. These results collectively suggest that p53 activation in response to mitotic spindle damage requires signaling via BubR1-mediated phosphorylation.


FEBS Letters | 2004

WD repeat-containing mitotic checkpoint proteins act as transcriptional repressors during interphase

Young‐Mee Yoon; Kwan-Hyuck Baek; Sook-Jung Jeong; Hyunjin Shin; Geun-Hyoung Ha; Ae-Hwa Jeon; Sang-Gu Hwang; Jang-Soo Chun; Chang-Woo Lee

WD repeats are implicated in protein–protein interactions and regulate a wide variety of cellular functions, including chromatin remodeling and transcription. The WD repeats of the Bub3 and Cdc20 kinetochore proteins are important for the physical interactions of these proteins with Mad2 and BubR1 to yield a kinetochore protein complex capable of delaying anaphase by inhibiting ubiquitin ligation via the anaphase‐promoting complex/cyclosome. Here, we show that Bub3 and Cdc20 form a complex with histone deacetylases; this interaction appears to confer transcriptional repressor activity in a heterologous DNA‐binding context. In addition, inhibition of Bub3 and Cdc20 expression significantly impairs interphase cell cycle. These results indicate that Bub3 and Cdc20 play additional roles in the integration of cell cycle arrest as transcriptional repressors.


Cancer Research | 2004

Transcriptional Abnormality of the hsMAD2 Mitotic Checkpoint Gene Is a Potential Link to Hepatocellular Carcinogenesis

Sook-Jung Jeong; Hyunjin Shin; So-Jung Kim; Geun-Hyoung Ha; Bok-Im Cho; Kwan-Hyuck Baek; Chang-Min Kim; Chang-Woo Lee

MAD2 is localized to kinetochores of unaligned chromosomes, where it inactivates the anaphase-promoting complex/cyclosome, thus contributing to the production of a diffusible anaphase inhibitory signal. Disruption of MAD2 expression leads to defects in the mitotic checkpoint, chromosome missegregation, and tumorigenesis. However, the mechanism by which deregulation and/or abnormality of hsMAD2 expression remains to be elucidated. Here, we clone and analyze a ∼0.5 kb fragment upstream of hsMAD2 and show that this fragment acts as a strong promoter. Transcriptional dysfunction of hsMAD2 is frequently observed in hepatocellular carcinoma cells, and down-regulation of hsMAD2 protein expression is correlated with transcriptional silencing of the hsMAD2 promoter by hypermethylation. These results imply a relationship between transcriptional abnormality of this mitotic checkpoint gene and mitotic abnormality in human cancers.


Cell Death & Differentiation | 2012

Tankyrase-1 function at telomeres and during mitosis is regulated by Polo-like kinase-1-mediated phosphorylation.

Geun-Hyoung Ha; Hyun Soo Kim; Go H; Lee H; Hiroyuki Seimiya; Doo Hyun Chung; Chang-Woo Lee

Telomere length is critical for chromosome stability that affects cell proliferation and survival. Telomere elongation by telomerase is inhibited by the telomeric protein, TRF1. Tankyrase-1 (TNKS1) poly(ADP-ribosyl)ates TRF1 and releases TRF1 from telomeres, thereby allowing access of telomerase to the telomeres. TNKS1-mediated poly(ADP-ribosyl)ation also appears to be crucial for regulating the mitotic cell cycle. In searching for proteins that interact with polo-like kinase-1 (Plk1) by using complex proteomics, we identified TNKS1 as a novel Plk1-binding protein. Here, we report that Plk1 forms a complex with TNKS1 in vitro and in vivo, and phosphorylates TNKS1. Phosphorylation of TNKS1 by Plk1 appears to increase TNKS1 stability and telomeric poly(ADP-ribose) polymerase (PARP) activity. By contrast, targeted inhibition of Plk1 or mutation of phosphorylation sites decreased the stability and PARP activity of TNKS1, leading to distort mitotic spindle-pole assembly and telomeric ends. Taken together, our results provide evidence of a novel molecular mechanism in which phosphorylation of TNKS1 by Plk1 may help regulate mitotic spindle assembly and promote telomeric chromatin maintenance.


Cell Death & Differentiation | 2009

Mitotic catastrophe is the predominant response to histone acetyltransferase depletion

Geun-Hyoung Ha; Hyun Soo Kim; Chang Geun Lee; Ho Park; Eun Jung Kim; Shin Hj; Jin-Kwan Lee; Kyo Won Lee; Chang-Woo Lee

Histone acetylation induces chromatin opening by perturbing higher-order chromatin compaction and folding, suggesting that histone acetylation and deacetylation dynamics are central to chromosome condensation or decondensation. The condensation of chromosomes during mitosis is an essential prerequisite for successful chromosome segregation. In this study, we depleted three representative histone acetyltransferases (HATs; p300, CBP, and P/CAF) using shRNAs to explore their role in regulating mitotic progression and chromosome segregation. We showed that HAT depletion severely interfered with the normal timing of mitotic progression, and it reduced condensin subunit levels. The predominant response to HAT depletion, in both human primary and cancer cells, was a mitotic catastrophe following aberrant mitotic arrest. Alternatively, adaptation to HAT depletion, particularly in cancer cells, led to multinucleation and aneuploidy. Interestingly, mitotic catastrophe induced by HAT depletion appeared to be coupled to the signaling process of H2AX phosphorylation and foci formation, independently of DNA double-strand breaks and DNA damage. Taken together, our results provide novel molecular evidence that HAT proteins maintain mitotic chromatin assembly and integrity as a cellular determinant of mitotic cell death.


Journal of Clinical Investigation | 2014

Pellino 1 promotes lymphomagenesis by deregulating BCL6 polyubiquitination

Hye-Young Park; Heounjeong Go; Ha Rim Song; Su-Hyeon Kim; Geun-Hyoung Ha; Yoon-Kyung Jeon; Ji-Eun Kim; Ho Lee; Hyeseong Cho; Ho Chul Kang; Hee-Young Chung; Chul-Woo Kim; Doo Hyun Chung; Chang-Woo Lee

The signal-responsive E3 ubiquitin ligase pellino 1 (PELI1) regulates TLR and T cell receptor (TCR) signaling and contributes to the maintenance of autoimmunity; however, little is known about the consequence of mutations that result in upregulation of PELI1. Here, we developed transgenic mice that constitutively express human PELI1 and determined that these mice have a shorter lifespan due to tumor formation. Constitutive expression of PELI1 resulted in ligand-independent hyperactivation of B cells and facilitated the development of a wide range of lymphoid tumors, with prominent B cell infiltration observed across multiple organs. PELI1 directly interacted with the oncoprotein B cell chronic lymphocytic leukemia (BCL6) and induced lysine 63-mediated BCL6 polyubiquitination. In samples from patients with diffuse large B cell lymphomas (DLBCLs), PELI1 expression levels positively correlated with BCL6 expression, and PELI1 overexpression was closely associated with poor prognosis in DLBCLs. Together, these results suggest that increased PELI1 expression and subsequent induction of BCL6 promotes lymphomagenesis and that this pathway may be a potential target for therapeutic strategies to treat B cell lymphomas.


The EMBO Journal | 2010

The hsSsu72 phosphatase is a cohesin-binding protein that regulates the resolution of sister chromatid arm cohesion.

Hyun-Soo Kim; Kwan-Hyuck Baek; Geun-Hyoung Ha; Jae-Chul Lee; Yu-Na Kim; Janet Lee; Hye-Young Park; Noo Ri Lee; Ho Lee; Yunje Cho; Chang-Woo Lee

Cohesin is a multiprotein complex that establishes sister chromatid cohesion from S phase until mitosis or meiosis. In vertebrates, sister chromatid cohesion is dissolved in a stepwise manner: most cohesins are removed from the chromosome arms via a process that requires polo‐like kinase 1 (Plk1), aurora B and Wapl, whereas a minor amount of cohesin, found preferentially at the centromere, is cleaved by separase following its activation by the anaphase‐promoting complex/cyclosome. Here, we report that our budding yeast two‐hybrid assay identified hsSsu72 phosphatase as a Rad21‐binding protein. Additional experiments revealed that Ssu72 directly interacts with Rad21 and SA2 in vitro and in vivo, and associates with sister chromatids in human cells. Interestingly, depletion or mutational inactivation of Ssu72 phosphatase activity caused the premature resolution of sister chromatid arm cohesion, whereas the overexpression of Ssu72 yielded high resistance to this resolution. Interestingly, it appears that Ssu72 regulates the cohesion of chromosome arms but not centromeres, and acts by counteracting the phosphorylation of SA2. Thus, our study provides important new evidence, suggesting that Ssu72 is a novel cohesin‐binding protein capable of regulating cohesion between sister chromatid arms.


Cancer Research | 2009

Functional Interaction between BubR1 and Securin in an Anaphase-Promoting Complex/CyclosomeCdc20–Independent Manner

Hyun-Soo Kim; Yoon-Kyung Jeon; Geun-Hyoung Ha; Hye-Young Park; Yu-Jin Kim; Hyunjin Shin; Chang Geun Lee; Doo-Hyun Chung; Chang-Woo Lee

Activation of the mitotic checkpoint requires the precise timing and spatial organization of mitotic regulatory events, and ensures accurate chromosome segregation. Mitotic checkpoint proteins such as BubR1 and Mad2 bind to Cdc20, and inhibit anaphase-promoting complex/cyclosome(Cdc20)-mediated securin degradation and the onset of anaphase. BubR1 mediates the proper attachment of microtubules to kinetochores, and links the regulation of chromosome-spindle attachment to mitotic checkpoint signaling. Therefore, disruption of BubR1 activity results in a loss of the checkpoint control, chromosome instability, and/or early onset of malignancy. In this study, we show that BubR1 directly interacts with securin in vitro and in vivo. In addition, the BubR1 interaction contributes to the stability of securin, and there is a significant positive correlation between BubR1 and securin expressions in human cancer. Importantly, BubR1 competes with Cdc20 for binding to securin, and thereby the interaction between BubR1 and securin is greatly increased by the depletion of Cdc20. Our findings may identify a novel regulation of BubR1 that can generate an additional anaphase-inhibitory signal through the Cdc20-independent interaction of BubR1 with securin.


Cell Cycle | 2013

Cyclin-dependent kinase 4 signaling acts as a molecular switch between syngenic differentiation and neural transdifferentiation in human mesenchymal stem cells.

Janet Lee; Jeong-Hwa Baek; Kyu-Sil Choi; Hyun-Soo Kim; Hye-Young Park; Geun-Hyoung Ha; Ho Park; Kyo-Won Lee; Chang Geun Lee; Dong-Yun Yang; Hyo Eun Moon; Sun Ha Paek; Chang-Woo Lee

Multipotent mesenchymal stem/stromal cells (MSCs) are capable of differentiating into a variety of cell types from different germ layers. However, the molecular and biochemical mechanisms underlying the transdifferentiation of MSCs into specific cell types still need to be elucidated. In this study, we unexpectedly found that treatment of human adipose- and bone marrow-derived MSCs with cyclin-dependent kinase (CDK) inhibitor, in particular CDK4 inhibitor, selectively led to transdifferentiation into neural cells with a high frequency. Specifically, targeted inhibition of CDK4 expression using recombinant adenovial shRNA induced the neural transdifferentiation of human MSCs. However, the inhibition of CDK4 activity attenuated the syngenic differentiation of human adipose-derived MSCs. Importantly, the forced regulation of CDK4 activity showed reciprocal reversibility between neural differentiation and dedifferentiation of human MSCs. Together, these results provide novel molecular evidence underlying the neural transdifferentiation of human MSCs; in addition, CDK4 signaling appears to act as a molecular switch from syngenic differentiation to neural transdifferentiation of human MSCs.


Cell Death & Differentiation | 2017

Pellino-1 promotes lung carcinogenesis via the stabilization of Slug and Snail through K63-mediated polyubiquitination

Yoon Kyung Jeon; Chung Kwon Kim; Kyung Rim Hwang; Hye-Young Park; Jaemoon Koh; Doo Hyun Chung; Chang-Woo Lee; Geun-Hyoung Ha

Pellino-1 is an E3 ubiquitin ligase acting as a critical mediator for a variety of immune receptor signaling pathways, including Toll-like receptors, interleukin-1 receptor and T-cell receptors. We recently showed that the Pellino-1-transgenic (Tg) mice developed multiple tumors with different subtypes in hematolymphoid and solid organs. However, the molecular mechanism underlying the oncogenic role of Pellino-1 in solid tumors remains unknown. Pellino-1-Tg mice developed adenocarcinoma in the lungs, and Pellino-1 expression was higher in human lung adenocarcinoma cell lines compared with non-neoplastic bronchial epithelial cell lines. Pellino-1 overexpression increased the cell proliferation, survival, colony formation, invasion and migration of lung adenocarcinoma cells, whereas Pellino-1 knock-down showed the opposite effect. Pellino-1 overexpression activated PI3K/Akt and ERK signaling pathways and elicited an epithelial–mesenchymal transition (EMT) phenotype of lung adenocarcinoma cells. Pellino-1-mediated EMT was demonstrated through morphology, the upregulation of Vimentin, Slug and Snail expression and the downregulation of E-cadherin and β-catenin expression. Notably, Pellino-1 had a direct effect on the overexpression of Snail and Slug through Lys63-mediated polyubiquitination and the subsequent stabilization of these proteins. Pellino-1 expression level was significantly correlated with Snail and Slug expression in human lung adenocarcinoma tissues, and lung tumors from Pellino-1-Tg mice showed Snail and Slug overexpression. The Pellino-1-mediated increase in the migration of lung adenocarcinoma cells was mediated by Snail and Slug expression. Taken together, these results show that Pellino-1 contributes to lung tumorigenesis by inducing overexpression of Snail and Slug and promoting EMT. Pellino-1 might be a potential therapeutic target for lung cancer.

Collaboration


Dive into the Geun-Hyoung Ha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyun-Soo Kim

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chang Geun Lee

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Doo Hyun Chung

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Janet Lee

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Jin-Kwan Lee

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge