Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geyan Wu is active.

Publication


Featured researches published by Geyan Wu.


Nature Communications | 2014

miR-508 sustains phosphoinositide signalling and promotes aggressive phenotype of oesophageal squamous cell carcinoma.

Chuyong Lin; Aibin Liu; Jinrong Zhu; Xin Zhang; Geyan Wu; Pengli Ren; Jueheng Wu; Mengfeng Li; Jun Li; Libing Song

The strength and duration of phosphoinositide signalling from phosphatidylinositol-3-kinase (PI3K) activation to Akt is tightly balanced by phosphoinositide kinases and phosphatases. However, how phosphatase-mediated negative regulatory effects are concomitantly disrupted in cancers, which commonly exhibit constitutively activated PI3K/Akt signalling, remains undefined. Here we report that miR-508 directly suppresses multiple phosphatases, including inositol polyphosphate-5-phosphatase J (INPP5J), phosphatase and tensin homologue (PTEN) and inositol polyphosphate 4-phosphatase type I (INPP4A), resulting in constitutive activation of PI3K/Akt signalling. Furthermore, we find that overexpressing miR-508 promotes, while silencing miR-508 impairs, the aggressive phenotype of oesophageal squamous cell carcinoma (ESCC) both in vitro and in vivo. Importantly, the level of miR-508 correlates with poor survival and activated PI3K/Akt signalling in a large cohort of ESCC specimens. These findings uncover a mechanism for constitutive PI3K/Akt activation in ESCC, and support a functionally and clinically relevant epigenetic mechanism in cancer progression.


Cancer Research | 2016

miR-892b Silencing Activates NF-κB and Promotes Aggressiveness in Breast Cancer

Lili Jiang; Liang Yu; Xin Zhang; Fangyong Lei; Lan Wang; Xiangxia Liu; Shu Wu; Jinrong Zhu; Geyan Wu; Lixue Cao; Aibin Liu; Libing Song; Jun Li

The strength and duration of NF-κB signaling is tightly controlled at multiple levels under physiologic conditions, but the mechanism underlying constitutive activation of the NF-κB pathway in cancer remains unclear. In this study, we investigated miRNA-mediated regulation of the NF-κB cascade in breast cancer. We report that miR-892b expression was significantly downregulated in human breast cancer specimens and correlated with poor patient survival. Overexpression of miR-892b in breast cancer cells significantly decreased tumor growth, metastatic capacity, and the ability to induce angiogenesis, whereas miR-892b depletion enhanced these properties, in vitro and in vivo. Furthermore, we demonstrate that miR-892b attenuated NF-κB signaling by directly targeting and suppressing multiple mediators of NF-κB, including TRAF2, TAK1, and TAB3, and thus, miR-892b silencing in breast cancer cells sustains NF-κB activity. Moreover, miR-892b downregulation was attributed to aberrant hypermethylation of its promoter. Taken together, our results provide insight into a new mechanism by which NF-κB signaling becomes constitutively activated in breast cancer and suggest a tumor-suppressive role for miR-829b, prompting further investigation into miRNA mimics for cancer therapy.


Oncotarget | 2015

MiR-1207 overexpression promotes cancer stem cell-like traits in ovarian cancer by activating the Wnt/β-catenin signaling pathway.

Geyan Wu; Aibin Liu; Jinrong Zhu; Fangyong Lei; Shu Wu; Xin Zhang; Liping Ye; Lixue Cao; Shanyang He

Wnt/β-catenin signaling pathway is strictly controlled by multiple negative regulators. However, how tumor cells override the negative regulatory effects to maintain constitutive activation of Wnt/β-catenin signaling, which is commonly observed in various cancers, remains puzzling. In current study, we reported that overexpression of miR-1207 in ovarian cancer activated Wnt/β-catenin signaling by directly targeting and suppressing secreted Frizzled-related protein 1 (SFRP1), AXIN2 and inhibitor of β-catenin and TCF-4 (ICAT), which are vital negative regulators of the Wnt/β-catenin pathway. We found that the expression of miR-1207 was ubiquitously upregulated in both ovarian cancer tissues and cells, which inversely correlated with patient overall survival. Furthermore, overexpression of miR-1207 enhanced, while silencing miR-1207 reduced, stem cell-like traits of ovarian cancer cells in vitro and in vivo, including tumor sphere formation capability and proportion of SP+ and CD133+ cells. Importantly, upregulating miR-1207 promoted, while silencing miR-1207 inhibited, the tumorigenicity of ovarian cancer cells. Hence, our results suggest that miR-1207 plays a vital role in promoting the cancer stem cell-like phenotype in ovarian cancer and might represent a potential target for anti-ovarian cancer therapy.


Oncotarget | 2016

MicroRNA-1229 overexpression promotes cell proliferation and tumorigenicity and activates Wnt/β-catenin signaling in breast cancer

Zhanyao Tan; Haiqing Zheng; Xiangxia Liu; Wenhui Zhang; Jinrong Zhu; Geyan Wu; Lixue Cao; Junwei Song; Shu Wu; Libing Song; Jun Li

Constitutive activation of the Wnt/β-catenin pathway promotes malignant proliferation and it is inversely correlated with the prognosis of patients with breast cancer. However, mutations in key regulators, such as APC, Axin and β-catenin, contribute to aberrant activation of the Wnt/β-catenin signaling pathway in various cancers, but rarely found in breast cancer, suggesting that other mechanisms might be involved in the activation of Wnt/β-catenin signaling in breast cancer. In the present study, we found that miR-1229 expression was markedly upregulated in breast cancer and associated with poor survival. Overexpressing miR-1229 promoted while inhibiting miR-1229 reduced, proliferation of breast cancer cell proliferation in vitro and tumor growth in vivo. Furthermore, we found that overexpression of miR-1229 activated the Wnt/β-catenin signaling pathway in breast cancer by directly targeting the multiple important negative regulators of Wnt/β-catenin signaling, including adenomatous polyposis coli (APC), glycogen synthase kinase-3β (GSK-3β), and inhibitor of β-catenin and T cell factor (ICAT). Taken together, our results suggest that miR-1229 plays an important role in promotion breast cancer progression and may represent a novel therapeutic target in breast cancer.


Molecular Cancer | 2017

Antagonizing miR-455-3p inhibits chemoresistance and aggressiveness in esophageal squamous cell carcinoma

Aibin Liu; Jinrong Zhu; Geyan Wu; Lixue Cao; Zhanyao Tan; Shuxia Zhang; Lili Jiang; Jueheng Wu; Mengfeng Li; Libing Song; Jun Li

BackgroundThe plasticity of cancer stem cells (CSCs)/tumor-initiating cells (T-ICs) suggests that multiple CSC/T-IC subpopulations exist within a tumor and that multiple oncogenic pathways collaborate to maintain the CSC/T-IC state. Here, we aimed to identify potential therapeutic targets that concomitantly regulate multiple T-IC subpopulations and CSC/T-IC-associated pathways.MethodsA chemoresistant patient-derived xenograft (PDX) model of human esophageal squamous cell carcinoma (ESCC) was employed to identify microRNAs that contribute to ESCC aggressiveness. The oncogenic effects of microRNA-455-3p (miR-455-3p) on ESCC chemoresistance and tumorigenesis were examined by in vivo and in vitro chemoresistance, tumorsphere formation, side-population, and in vivo limiting dilution assays. The roles of miR-455-3p in activation of the Wnt/β-catenin and transforming growth factor-β (TGF-β)/Smad pathways were determined by luciferase and RNA immunoprecipitation assays.ResultsWe found that miR-455-3p played essential roles in ESCC chemoresistance and tumorigenesis. Treatment with a miR-455-3p antagomir dramatically chemosensitized ESCC cells and reduced the subpopulations of CD90+ and CD271+ T-ICs via deactivation of multiple stemness-associated pathways, including Wnt/β-catenin and TGF-β signaling. Importantly, miR-455-3p exhibited aberrant upregulation in various human cancer types, and was significantly associated with decreased overall survival of cancer patients.ConclusionsOur results demonstrate that miR-455-3p functions as an oncomiR in ESCC progression and may provide a potential therapeutic target to achieve better clinical outcomes in cancer patients.


Scientific Reports | 2016

Overexpression of Suprabasin is Associated with Proliferation and Tumorigenicity of Esophageal Squamous Cell Carcinoma

Jinrong Zhu; Geyan Wu; Qingyuan Li; Hui Gong; Junwei Song; Lixue Cao; Shu Wu; Libing Song; Lili Jiang

Suprabasin is a recently identified oncoprotein that is upregulated in multiple cancers. However, the clinical significance and biological role of suprabasin in human esophageal squamous cell carcinoma (ESCC) remains unclear. In the current study, we reported that suprabasin was markedly overexpressed in ESCC cell lines and tissues at both mRNA and protein levels, and this was associated with advanced clinical stage, tumor-nodes-metastasis (TNM) classification, histological differentiation, tumor size and poorer survival. Furthermore, we found that both proliferation and tumorigenicity of ESCC cells were significantly induced by suprabasin overexpression, but inhibited by suprabasin knock-down. Moreover, we demonstrated that upregulation of suprabasin activated the Wnt/β-catenin signaling pathway and led to nuclear localization of β-catenin and upregulation of Cyclin D1 and c-Myc. Together, our results suggest that suprabasin plays an important oncogenic role in promoting proliferation and tumorigenesis of ESCC.


Theranostics | 2018

Transcription factor AP-4 promotes tumorigenic capability and activates the Wnt/β-catenin pathway in hepatocellular carcinoma

Junwei Song; Chan Xie; Lili Jiang; Geyan Wu; Jinrong Zhu; Shuxia Zhang; Miaoling Tang; Libing Song; Jun Li

It has been reported that the transcription factor activating enhancer-binding protein 4 (TFAP4) is upregulated and associated with an aggressive phenotype in several cancers. However, the precise mechanisms underlying the oncogenic role of TFAP4 remain largely unknown. Methods: TFAP4 expression levels in hepatocellular carcinoma (HCC) cells and tissues were detected by quantitative real-time PCR (qPCR) and immunohistochemistry (IHC). In vitro and in vivo assays were performed to investigate the oncogenic function of TFAP4 in the tumor-initiating cell (TIC)-like phenotype and the tumorigenic capability of HCC cells. Luciferase reporter and chromatin immunoprecipitation (ChIP)-qPCR assays were performed to determine the underlying mechanism of TFAP4-mediated HCC aggressiveness. Results: TFAP4 was markedly upregulated in human HCC, and was associated with significantly poorer overall and relapse-free survival in patients with HCC. Furthermore, we found that overexpression of TFAP4 significantly enhanced, whereas silencing TFAP4 inhibited, the tumor sphere formation ability and proportion of side-population cells in HCC cells in vitro, and ectopic TFAP4 enhanced the tumorigenicity of HCC cells in vivo. Mechanistically, we demonstrated that TFAP4 played an important role in activating Wnt/β-catenin signaling by directly binding to the promoters of DVL1 (dishevelled segment polarity protein 1) and LEF1 (lymphoid enhancer binding factor 1). Conclusions: Our results provide new insight into the mechanisms underlying hyperactivation of the Wnt/β-catenin pathway in HCC, as well the oncogenic ability of TFAP4 to enhance the tumor-forming ability of HCC cells.


Theranostics | 2018

Overexpression of HOXC10 promotes angiogenesis in human glioma via interaction with PRMT5 and upregulation of VEGFA expression

Zhanyao Tan; Kun Chen; Wenjiao Wu; Yanqing Zhou; Jinrong Zhu; Geyan Wu; Lixue Cao; Xin Zhang; Hongyu Guan; Yi Yang; Wei Zhang; Jun Li

High levels of angiogenesis are associated with poor prognosis in patients with gliomas. However, the molecular mechanisms underlying tumor angiogenesis remain unclear. Methods: The effect of homeobox C10 (HOXC10) on tube formation, migration, and proliferation of human umbilical vein endothelial cells (HUVECs) and on chicken chorioallantoic membranes (CAMs) was examined. An animal xenograft model was used to examine the effect of HOXC10 on xenograft angiogenesis or the effect of bevacizumab, a monoclonal antibody against vascular endothelial growth factor A (VEGFA), on HOXC10-overexpressing xenografts. A chromatin immunoprecipitation assay was applied to investigate the mechanism in which HOXC10 regulated VEGFA expression. Results: Overexpressing HOXC10 enhanced the capacity of glioma cells to induce tube formation, migration and proliferation of HUVECs, and neovascularization in CAMs, while silencing HOXC10 had the opposite result. We observed that CD31 staining was significantly increased in tumors formed by HOXC10-overexpressing U251MG cells but reduced in HOXC10-silenced tumors. Mechanistically, HOXC10 could transcriptionally upregulate VEGFA expression by binding to its promoter. Strikingly, treatment with bevacizumab, a monoclonal antibody against VEGFA, significantly inhibited the growth of HOXC10-overexpressing tumors and efficiently impaired angiogenesis. Protein arginine methyltransferase 5 (PRMT5) and WD repeat domain 5 (WDR5), both of which regulate histone post-translational modifications, were required for HOXC10-mediated VEGFA upregulation. Importantly, a significant correlation between HOXC10 levels and VEGFA expression was observed in a cohort of human gliomas. Conclusions: This study suggests that HOXC10 induces glioma angiogenesis by transcriptionally upregulating VEGFA expression, and may represent a potential target for antiangiogenic therapy in gliomas.


Oncogene | 2018

TRIM14 promotes chemoresistance in gliomas by activating Wnt/β-catenin signaling via stabilizing Dvl2

Zhanyao Tan; Libing Song; Wenjiao Wu; Yanqing Zhou; Jinrong Zhu; Geyan Wu; Lixue Cao; Junwei Song; Jun Li; Wei Zhang

Gliomas are a lethal class of brain cancer, with a median survival below 15 months in spite of therapeutic advances. The poor prognosis of this disease is largely attributed to acquired chemotherapy resistance, and new strategies are urgently needed to target resistant glioma cells. Herein, our study demonstrated that tripartite motif-containing 14 (TRIM14) overexpressed in glioma specimens (including tissues and cell lines), and that high level of TRIM14 predicted poor outcome of glioma patients. Furthermore, we found that upregulation of TRIM14 in glioma cells conferred chemoresistance to temozolomide in vitro and in vivo; conversely, silencing TRIM14 sensitized glioma cells to temozolomide. These findings demonstrated that TRIM14 stabilized dishevelled (Dvl2) and subsequently activated the canonical Wnt signaling and promoted chemoresistance. Moreover, inhibition of Dvl2 reversed the oncogenic effect of TRIM14 on chemoresistance. Importantly, consistent with the abovementioned results, we found that TRIM14 expression was significantly associated with hyperactivation of canonical Wnt pathway in clinical glioma specimens. Collectively, the study reveals a new molecular mechanism driving chemotherapy resistance in gliomas, and suggests an opportunity to develop novel therapeutic interventions against gliomas.


Molecular Carcinogenesis | 2018

Overexpression of SHCBP1 promotes migration and invasion in gliomas by activating the NF-κB signaling pathway

Yanqing Zhou; Zhanyao Tan; Kun Chen; Wenjiao Wu; Jinrong Zhu; Geyan Wu; Lixue Cao; Xin Zhang; Xin Zeng; Jun Li; Wei Zhang

Gliomas are common, aggressive central nervous system tumors with poor overall survival rates. Despite improvements in neurosurgery, chemotherapy, and radiotherapy, the outcomes of patients with malignant gliomas remain poor. Therefore, increased knowledge of the molecular mechanisms that regulate glioma progression is crucial to identify novel therapeutic targets. Here, we reported that SHCBP1, a member of Src homolog and collagen homolog (Shc) family, was significantly overexpressed in glioma tissues and glioma cell lines compared to the corresponding normal tissues and cells. Ectopic overexpression of SHCBP1 promoted glioma cell migration and invasion, whereas knockdown of endogenous SHCBP1 had the opposite effects. Importantly, we demonstrated that SHCBP1 promoted aggressiveness in gliomas by activating the NF‐κB signaling pathway. Collectively, our study indicates that SHCBP1 plays a pivotal role to promote progression in gliomas and targeting the oncogenic effects of SHCBP1 may provide a clinical strategy to treat gliomas.

Collaboration


Dive into the Geyan Wu's collaboration.

Top Co-Authors

Avatar

Jinrong Zhu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Jun Li

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Libing Song

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Lixue Cao

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Xin Zhang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Aibin Liu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Zhanyao Tan

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Lili Jiang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Shu Wu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Junwei Song

Sun Yat-sen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge