Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gezi Li is active.

Publication


Featured researches published by Gezi Li.


Journal of Proteome Research | 2012

Proteomics Reveals the Effects of Salicylic Acid on Growth and Tolerance to Subsequent Drought Stress in Wheat

Guozhang Kang; Gezi Li; Wei Xu; Xiaoqi Peng; Qiaoxia Han; Yunji Zhu; Tiancai Guo

Pretreatment with 0.5 mM salicylic acid (SA) for 3 days significantly enhanced the growth and tolerance to subsequent drought stress (PEG-6000, 15%) in wheat seedlings, manifesting as increased shoot and root dry weights, and decreased lipid peroxidation. Total proteins from wheat leaves exposed to (i) 0.5 mM SA pretreatment, (ii) drought stress, and (iii) 0.5 mM SA treatment plus drought-stress treatments were analyzed using a proteomics method. Eighty-two stress-responsive protein spots showed significant changes, of which 76 were successfully identified by MALDI-TOF-TOF. Analysis of protein expression patterns revealed that proteins associated with signal transduction, stress defense, photosynthesis, carbohydrate metabolism, protein metabolism, and energy production could by involved in SA-induced growth and drought tolerance in wheat seedlings. Furthermore, the SA-responsive protein interaction network revealed 35 key proteins, suggesting that these proteins are critical for SA-induced tolerance.


Biologia Plantarum | 2013

Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle

Guozhang Kang; Gezi Li; Guoqin Liu; W. Xu; Xiaoqi Peng; Chenyang Wang; Yunji Zhu; Tiancai Guo

Treatment with 0.5 mM salicylic acid (SA) significantly alleviated growth inhibition induced by drought in wheat seedlings, manifested by less decreassed fresh mass, dry mass, plant height, root length, and less increased lipid peroxidation. Under drought stress, SA significantly increased the content of ascorbate (ASA) and glutathione (GSH). We determined the full-length cDNA sequences of genes encoding the glutathione-S-transferase 1 (GST1) and 2 (GST2) and we also measured the transcription of eight genes related to ASA-GSH cycle. The results indicated that exogenous SA significantly enhanced the transcription of GST1, GST2, glutathione reductase (GR), and monodehydroascorbate reductase (MDHAR) genes during almost the entire drought period, but only increased those of dehydroascorbate reductase (DHAR) at 12 h, glutathione peroxidase (GPX1) at 48 h, phospholipid hydroperoxide glutathione peroxidase (GPX2) at 12 and 24 h, and glutathione synthetase (GSHS) at 12, 24, and 48 h. This implies that SA alleviates the detrimental effects of drought stress on wheat seedling growth by influencing the ASA-GSH cycle.


Journal of Proteome Research | 2013

Proteomic analysis of leaves and roots of common wheat (Triticum aestivum L.) under copper-stress conditions.

Gezi Li; Xiaoqi Peng; Hongmei Xuan; Liting Wei; Yingying Yang; Tiancai Guo; Guozhang Kang

Proteomic studies were performed to identify the protein species involved in copper (Cu) stress responses in common wheat. Two-week-old wheat seedlings were exposed to 100 μM CuSO4 treatment for 3 days. Growth of shoots and roots was markedly inhibited and lipid peroxidation was greatly increased. Cu was readily absorbed by wheat seedlings, with greater Cu contents in roots than in leaves. Using 2-DE method, 98 protein spots showed significantly enhanced or reduced abundance, of which 93 were successfully identified. Of these identified protein species, 49 and 44 were found in roots and leaves, respectively. Abundance of most of identified protein species, which function in signal transduction, stress defense, and energy production, was significantly enhanced, while that of many protein species involved in carbohydrate metabolism, protein metabolism, and photosynthesis was severely reduced. The Cu-responsive protein interaction network revealed 36 key proteins, most of which may be regulated by abscisic acid (ABA), ethylene, jasmonic acid (JA), and so on. Exogenous JA application showed a protective effect against Cu stress and significantly increased transcripts of the glutathione S-transferase (GST) gene. This study provides insight into the molecular mechanisms of Cu responses in higher plants.


Acta Physiologiae Plantarum | 2014

Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants

Guozhang Kang; Gezi Li; Tiancai Guo

Salicylic acid (SA), a key signaling molecule in higher plants, has been found to play a role in the response to a diverse range of phytopathogens and is essential for the establishment of both local and systemic-acquired resistance. Recent studies have indicated that SA also plays an important role in abiotic stress-induced signaling, and studies on SA-modulated abiotic tolerance have mainly focused on the antioxidant capacity of plants by altering the activity of anti-oxidative enzymes. However, little information is available about the molecular mechanisms of SA-induced abiotic stress tolerance. Here, we review recent progress toward characterizing the SA-regulated genes and proteins, the SA signaling pathway, the connections and differences between SA-induced tolerances to biotic and abiotic stresses, and the interaction of SA with other plant hormones under conditions of abiotic stress. The future prospects related to molecular tolerance of SA in response to abiotic stresses are also further summarized.


Biochimica et Biophysica Acta | 2012

Proteomic analysis on salicylic acid-induced salt tolerance in common wheat seedlings (Triticum aestivum L.)

Guozhang Kang; Gezi Li; Bei-Bei Zheng; Qiaoxia Han; Chenyang Wang; Yunji Zhu; Tiancai Guo

The influence of salicylic acid (SA) on the salt tolerance mechanism in seedlings of common wheat (Triticum aestivum L.) was investigated using physiological measurements combined with global expression profiling (proteomics). In the present study, 0.5mM SA significantly reduced NaCl-induced growth inhibition in wheat seedlings, manifesting as increased fresh weights, dry weights, and photosynthetic pigments, but decreased lipid peroxidation. Two-week-old wheat seedlings treated with 0.5mM SA, 250 mM NaCl and 250 mM NaCl+0.5mM SA for 3 days were used for the proteomic analyses. In total, 39 proteins differentially regulated by both salt and SA were revealed by 2D PAGE, and 38 proteins were identified by MALDI-TOF/TOF MS. The identified proteins were involved in various cellular responses and metabolic processes including signal transduction, stress defense, energy, metabolism, photosynthesis, and others of unknown function. All protein spots involved in signal transduction and the defense response were significantly upregulated by SA under salt stress, suggesting that these proteins could play a role in the SA-induced salt resistance in wheat seedlings.


Journal of Proteome Research | 2015

Hg-Responsive Proteins Identified in Wheat Seedlings Using iTRAQ Analysis and the Role of ABA in Hg Stress

Guozhang Kang; Gezi Li; Lina Wang; Liting Wei; Yang Yang; Pengfei Wang; Yingying Yang; Yonghua Wang; Wei Feng; Chenyang Wang; Tiancai Guo

Wheat seedlings exposed to 100 μM HgCl2 for 3 days exhibited high-level mercury (Hg) accumulation, which led to inhibited growth, increased lipid peroxidation, and disrupted cellular ultrastructures. And root growth and ultrastructural changes of wheat seedlings were inhibited more severely than those of leaves. To identify the wheat protein response to Hg stress, the iTRAQ method was used to determine the proteome profiles of the roots and leaves of wheat seedlings exposed to high-Hg conditions. 249 proteins were identified with significantly altered abundance. 117 were found in roots and 132 in leaves. These proteins were classified into signal transduction, stress defense, carbohydrate metabolism, protein metabolism, energy production, and transport functional groups. The majority of proteins identified in Hg-stressed roots and leaves displayed differently altered abundance, revealing organ-specific differences in adaption to Hg stress. Pathway Studio software was used to identify the Hg-responsive protein interaction network that included 49 putative key proteins, and they were potentially regulated by abscisic acid (ABA). Exogenous ABA application conferred protection against Hg stress and increased activities of peroxidase enzyme, suggesting that it may be an important factor in the Hg signaling pathway. These findings can provide useful insights into the molecular mechanisms of Hg responses in higher plants.


Journal of Proteomics | 2013

Proteomic analysis on the leaves of TaBTF3 gene virus-induced silenced wheat plants may reveal its regulatory mechanism

Guozhang Kang; Gezi Li; Hongzhen Ma; Chenyang Wang; Tiancai Guo

UNLABELLED Basic transcription factor 3 (BTF3) is involved in the transcriptional initiation of RNA polymerase II and is also associated with apoptosis. In this study, virus-induced gene silencing of TaBTF3 caused severe viral symptoms in wheat seedlings, which then displayed stunted growth, reduced height, and decreased total fresh and dry weights. A proteomic approach was further used to identify the protein species showing differential abundance between the TaBTF3 virus-induced gene silenced wheat plants and the barley stripe mosaic virus-induced gene silencing green fluorescent protein transgenic wheat plants (control) with the objective of exploring its regulatory mechanism in higher plants. Using two-dimensional electrophoresis technologies, 59 protein spots showed significant changes, of which 54 were successfully identified by tandem mass spectrometry with matrix-assisted laser desorption/ionization-time of flight spectrometry. Analysis of protein abundance revealed that the differential protein species were associated with signal transduction, stress defense, photosynthesis, carbohydrate metabolism, and protein metabolism, and were mostly localized in both chloroplasts and mitochondria. Furthermore, the BTF3-responsive protein interaction network revealed 20 key protein species, most of which are regulated by abscisic acid, ethane, or oxidative stress. This suggested that changes of these protein species could be critical in the BTF3 pathway. BIOLOGICAL SIGNIFICANCE Basic transcription factor 3 (BTF3), the β-subunit of NAC, has originally been identified as a basic transcription factor that is both involved in the transcriptional initiation of RNA polymerase II and associated with diverse biological functions. Reports on BTF3 mainly focus in animals, however, there has been limited molecular information about BTF3 in higher plants so far. In previous studies, we first isolated the TaBTF3 gene from common wheat (Triticum aestivum L.) and obtained silenced transgenic wheat seedlings using the VIGS method. In TaBTF3-silenced transgenic wheat plants, the structure of the wheat mesophyll cell was seriously damaged and transcripts of the chloroplast- and mitochondrial-encoded genes were significantly reduced. These results suggested that the TaBTF3 gene may be involved in regulating the growth and development of wheat seedlings. However, the induced or related genes by TaBTF3 have not been identified. The significance of this study is to first identify many protein species with the altered abundance between the TaBTF3 virus-induced silencing wheat plants and the BSMV-VIGS GFP transgenic wheat plants (control) using the proteomic approach. In addition, 20 of these identified protein species which might play critical roles in the BTF3 interaction network are identified using protein interaction network. These results help to further explore the molecular mechanism of BTF3 in higher plants.


Molecules | 2017

Functional Analysis of a Wheat AGPase Plastidial Small Subunit with a Truncated Transit Peptide

Yang Yang; Tian Gao; Mengjun Xu; Jie Dong; Hanxiao Li; Pengfei Wang; Gezi Li; Tiancai Guo; Guozhang Kang; Yonghua Wang

ADP-glucose pyrophosphorylase (AGPase), the key enzyme in starch synthesis, consists of two small subunits and two large subunits with cytosolic and plastidial isoforms. In our previous study, a cDNA sequence encoding the plastidial small subunit (TaAGPS1b) of AGPase in grains of bread wheat (Triticum aestivum L.) was isolated and the protein subunit encoded by this gene was characterized as a truncated transit peptide (about 50% shorter than those of other plant AGPS1bs). In the present study, TaAGPS1b was fused with green fluorescent protein (GFP) in rice protoplast cells, and confocal fluorescence microscopy observations revealed that like other AGPS1b containing the normal transit peptide, TaAGPS1b-GFP was localized in chloroplasts. TaAGPS1b was further overexpressed in a Chinese bread wheat cultivar, and the transgenic wheat lines exhibited a significant increase in endosperm AGPase activities, starch contents, and grain weights. These suggested that TaAGPS1b subunit was targeted into plastids by its truncated transit peptide and it could play an important role in starch synthesis in bread wheat grains.


International Journal of Molecular Sciences | 2018

Function of the ERFL1a Transcription Factor in Wheat Responses to Water Deficiency

Tian Gao; Gezi Li; Chuan-Ren Wang; Jie Dong; Sha-Sha Yuan; Yonghua Wang; Guozhang Kang

The APETALA2/ethylene response factor (AP2/ERF) superfamily is involved in the responses of plants to biotic and abiotic stresses; however, the functions and mechanisms of some members of this family in plants are unclear. In our previous study, expression of TaERFL1a, a member of the AP2/ERF family, was remarkably induced in wheat seedlings suffering freezing stress. In this study, we show that its expression was rapidly upregulated in response to salt, cold, and water deficiency, suggesting roles in the responses to abiotic stresses. Further, transient barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) resulted in significantly reduced tolerance to 20% PEG6000-stimulated water deficiency. Subcellular localization and transcriptional activation assays separately showed that TaERFL1a was targeted to the nucleus and possessed transcriptional activation activity. Yeast two-hybrid library screening identified six interacting proteins, and of these, the interactions between TaERFL1a and TaSGT1, and TaERFL1a and TaDAD2 proteins were further confirmed by yeast co-transformation and bimolecular fluorescent complementation (BiFC). Collectively, our results suggest that TaERFL1a is a stress-responsive transcription factor, which could be functionally related to proteins involved in the abiotic stress responses of plants.


Acta Physiologiae Plantarum | 2013

Transcriptional profile of the spring freeze response in the leaves of bread wheat (Triticum aestivum L.)

Guozhang Kang; Gezi Li; Wenping Yang; Qiaoxia Han; Hongzhen Ma; Yonghua Wang; Jiangping Ren; Yunji Zhu; Tiancai Guo

Collaboration


Dive into the Gezi Li's collaboration.

Top Co-Authors

Avatar

Guozhang Kang

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Tiancai Guo

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yonghua Wang

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chenyang Wang

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qiaoxia Han

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yunji Zhu

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Pengfei Wang

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Tian Gao

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaoqi Peng

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hongzhen Ma

Henan Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge