Yunji Zhu
Henan Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yunji Zhu.
Journal of Proteome Research | 2012
Guozhang Kang; Gezi Li; Wei Xu; Xiaoqi Peng; Qiaoxia Han; Yunji Zhu; Tiancai Guo
Pretreatment with 0.5 mM salicylic acid (SA) for 3 days significantly enhanced the growth and tolerance to subsequent drought stress (PEG-6000, 15%) in wheat seedlings, manifesting as increased shoot and root dry weights, and decreased lipid peroxidation. Total proteins from wheat leaves exposed to (i) 0.5 mM SA pretreatment, (ii) drought stress, and (iii) 0.5 mM SA treatment plus drought-stress treatments were analyzed using a proteomics method. Eighty-two stress-responsive protein spots showed significant changes, of which 76 were successfully identified by MALDI-TOF-TOF. Analysis of protein expression patterns revealed that proteins associated with signal transduction, stress defense, photosynthesis, carbohydrate metabolism, protein metabolism, and energy production could by involved in SA-induced growth and drought tolerance in wheat seedlings. Furthermore, the SA-responsive protein interaction network revealed 35 key proteins, suggesting that these proteins are critical for SA-induced tolerance.
Biologia Plantarum | 2013
Guozhang Kang; Gezi Li; Guoqin Liu; W. Xu; Xiaoqi Peng; Chenyang Wang; Yunji Zhu; Tiancai Guo
Treatment with 0.5 mM salicylic acid (SA) significantly alleviated growth inhibition induced by drought in wheat seedlings, manifested by less decreassed fresh mass, dry mass, plant height, root length, and less increased lipid peroxidation. Under drought stress, SA significantly increased the content of ascorbate (ASA) and glutathione (GSH). We determined the full-length cDNA sequences of genes encoding the glutathione-S-transferase 1 (GST1) and 2 (GST2) and we also measured the transcription of eight genes related to ASA-GSH cycle. The results indicated that exogenous SA significantly enhanced the transcription of GST1, GST2, glutathione reductase (GR), and monodehydroascorbate reductase (MDHAR) genes during almost the entire drought period, but only increased those of dehydroascorbate reductase (DHAR) at 12 h, glutathione peroxidase (GPX1) at 48 h, phospholipid hydroperoxide glutathione peroxidase (GPX2) at 12 and 24 h, and glutathione synthetase (GSHS) at 12, 24, and 48 h. This implies that SA alleviates the detrimental effects of drought stress on wheat seedling growth by influencing the ASA-GSH cycle.
Plant Physiology and Biochemistry | 2013
Guozhang Kang; Guoqin Liu; Xiaoqi Peng; Liting Wei; Chenyang Wang; Yunji Zhu; Ying Ma; Yumei Jiang; Tiancai Guo
ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed step of starch synthesis. AGPase is a heterotetramer composed of two large subunits and two small subunits, has cytosolic and plastidial isoforms, and is detected mainly in the cytosol of endosperm in cereal crops. To investigate the effects of AGPase cytosolic large subunit gene (LSU I) on starch biosynthesis in higher plant, in this study, a TaLSU I gene from wheat was overexpressed under the control of an endosperm-specific promoter in a wheat cultivar (Yumai 34). PCR, Southern blot, and real-time RT-PCR analyses indicated that the transgene was integrated into the genome of transgenic plants and was overexpressed in their progeny. The overexpression of the TaLSU I gene remarkably enhanced AGPase activity, endosperm starch weight, grain number per spike, and single grain weight. Therefore, we conclude that overexpression of the TaLSU I gene enhances the starch biosynthesis in endosperm of wheat grains, having potential applications in wheat breeding to develop a high-yield wheat cultivar with high starch weight and kernel weight.
Biochimica et Biophysica Acta | 2012
Guozhang Kang; Gezi Li; Bei-Bei Zheng; Qiaoxia Han; Chenyang Wang; Yunji Zhu; Tiancai Guo
The influence of salicylic acid (SA) on the salt tolerance mechanism in seedlings of common wheat (Triticum aestivum L.) was investigated using physiological measurements combined with global expression profiling (proteomics). In the present study, 0.5mM SA significantly reduced NaCl-induced growth inhibition in wheat seedlings, manifesting as increased fresh weights, dry weights, and photosynthetic pigments, but decreased lipid peroxidation. Two-week-old wheat seedlings treated with 0.5mM SA, 250 mM NaCl and 250 mM NaCl+0.5mM SA for 3 days were used for the proteomic analyses. In total, 39 proteins differentially regulated by both salt and SA were revealed by 2D PAGE, and 38 proteins were identified by MALDI-TOF/TOF MS. The identified proteins were involved in various cellular responses and metabolic processes including signal transduction, stress defense, energy, metabolism, photosynthesis, and others of unknown function. All protein spots involved in signal transduction and the defense response were significantly upregulated by SA under salt stress, suggesting that these proteins could play a role in the SA-induced salt resistance in wheat seedlings.
Journal of Integrative Agriculture | 2014
Dong-yun Ma; Dexiang Sun; Yi Zuo; Chenyang Wang; Yunji Zhu; Tiancai Guo
The current interest in the health benefits of whole wheat grain has prompted breeders to further increase the concentration of antioxidants in wheat. The objective of this study was to investigate the variation in antioxidant content among Chinese wheat grains and the relationship between antioxidants and grain color and morphological characteristics. A wide variation was observed in the total phenolic, carotenoid and flavonoid contents, as well as the antioxidant activity (AOA), of Chinese wheat varieties. Black wheat had the highest mean total phenolic, carotenoid and flavonoid contents and the highest AOA, followed by red and white wheats. The grain color parameters were significantly negatively correlated with total phenolic, carotenoid and flavonoid contents and AOA among all of the wheat varieties examined, and grain weight was also significantly negatively correlated with these traits. The same correlation between grain weight and antioxidant traits was also observed within individual groups of wheat, which indicates that grain weight may be used as an index for selecting wheat varieties with high AOA. Landraces had significantly higher flavonoid content than commercial wheat varieties. The results of this study may be useful for breeding nutrient-rich wheat varieties.
PLOS ONE | 2016
Jianmin Gao; Yingxin Xie; Haiyang Jin; Yuan Liu; Xueying Bai; Dongyun Ma; Yunji Zhu; Chenyang Wang; Tiancai Guo
The application of crop residues combined with Nitrogen (N) fertilizer has been broadly adopted in China. Crop residue amendments can provide readily available C and N, as well as other nutrients to agricultural soils, but also intensify the N fixation, further affecting N2O emissions. N2O pulses are obviously driven by rainfall, irrigation and fertilization. Fertilization before rainfall or followed by flooding irrigation is a general management practice for a wheat-maize rotation in the North China Plain. Yet, little is known on the impacts of crop residues combined with N fertilizer application on N2O emission under high soil moisture content. A laboratory incubation experiment was conducted to investigate the effects of two crop residue amendments (maize and wheat), individually or in combination with N fertilizer, on N2O emissions and denitrifier abundance in two main agricultural soils (one is an alluvial soil, pH 8.55, belongs to Ochri-Aquic Cambosols, OAC, the other is a lime concretion black soil, pH 6.61, belongs to Hapli-Aquic Vertosols, HAV) under 80% WFPS (the water filled pore space) in the North China Plain. Each type soil contains seven treatments: a control with no N fertilizer application (CK, N0), 200 kg N ha-1 (N200), 250 kg N ha-1 (N250), maize residue plus N200 (MN200), maize residue plus N250 (MN250), wheat residue plus N200 (WN200) and wheat residue plus N250 (WN250). Results showed that, in the HAV soil, MN250 and WN250 increased the cumulative N2O emissions by 60% and 30% compared with N250 treatment, respectively, but MN200 and WN200 decreased the cumulative N2O emissions by 20% and 50% compared with N200. In the OAC soil, compared with N200 or N250, WN200 and WN250 increased the cumulative N2O emission by 40%-50%, but MN200 and MN250 decreased the cumulative N2O emission by 10%-20%. Compared with CK, addition of crop residue or N fertilizer resulted in significant increases in N2O emissions in both soils. The cumulative N2O emissions from the treatments of 250 kg N ha-1 were 1.1–3.3 times higher than those of treatments with 200 kg N ha-1 in both soils with adding equal amounts of the same type of crop residue. Abundance of the 16S rRNA gene did not significantly change in all treatments in two soils, but the nosZ and nirS genes were more abundant in soils amended with crop residues compared with CK or N-only treatments. N2O emission, however, were not related to the abundance of denitrifier containing nirS or nosZ. The research provided some information regarding the effect of crop residues with N fertilizer on N2O emissions and denitrifier abundances in two soils. Our results imply the property of crop residue and rate of N fertilizer are important influencing factors of N2O emission when crop residues combined with N fertilizer are applied to different agricultural soils.
Physiologia Plantarum | 2015
Guozhang Kang; Xiaoqi Peng; Lina Wang; Yingying Yang; Ruixin Shao; Yingxin Xie; Dongyun Ma; Chenyang Wang; Tiancai Guo; Yunji Zhu
Transitory starch in cereal plant leaves is synthesized during the day and remobilized at night to provide a carbon source for growth and grain filling, but its mechanistic basis is still poorly understood. The objective of this study is to explore the regulatory mechanism for starch biosynthesis and degradation in plant source organs. Using transmission electron microscopy, we observed that during the day after anthesis, starch granules in mesophyll cells of wheat flag leaves accumulated in chloroplasts and the number of starch granules gradually decreased with wheat leaf growth. During the night, starch granules synthesized in chloroplasts during the day were completely or partially degraded. The transcript levels of 26 starch synthesis-related genes and 16 starch breakdown-related genes were further measured using quantitative real-time reverse transcription polymerase chain reaction. Expression profile analysis revealed that starch metabolism genes were clustered into two groups based on their temporal expression patterns. The genes in the first group were highly expressed and presumed to play crucial roles in starch metabolism. The genes in the other group were not highly expressed in flag leaves and may have minor functions in starch metabolism in leaf tissue. The functions of most of these genes in leaves were further discussed. The starch metabolism-related genes that are predominantly expressed in wheat flag leaves differ from those expressed in wheat grain, indicating that two different pathways for starch metabolism operate in these tissues. This provides specific information on the molecular mechanisms of transitory starch metabolism in higher plants.
PLOS ONE | 2016
Chunfeng Zheng; Yunji Zhu; Chenyang Wang; Tiancai Guo
Wheat yield is largely determined during the period prior to flowering, when the final numbers of fertile florets and grains per spike are established. The aim of this study was to assess the dynamics of floret primordia development in winter wheat in response to pre-anthesis application of a synthetic cytokinin, 6-benzylaminopurine (6-BA). We conducted an experiment in which two foliar spray treatments were applied (water or 6-BA) to Chinese winter wheat at 25 days after jointing during two growing seasons (2012–2013 and 2013–2014). Both the final grain number per spike and grain yield at maturity exhibited remarkable increases in response to the 6-BA treatment. Application of 6-BA increased the number of fertile florets in basal spikelets and, to a greater extent, in central spikelets. The mechanism by which 6-BA application affected the final number of fertile florets primarily involved suppression of the floret abortion rates. Application of 6-BA considerably reduced the abortion rates of basal, central and apical spikelet florets (by as much as 77% compared with the control), as well as the degeneration rates of basal and central spikelet florets, albeit to a lesser degree. The effect of 6-BA application on the likelihood of proximal florets being set was limited to the distal florets in the whole spike, whereas obvious increases in the likelihood of grain set under 6-BA treatment were observed in distal florets, primarily in central spikelet positions. The results of this study provide important evidence that 6-BA application to florets (final fertile floret production) results in an increased grain yield.
PLOS ONE | 2017
Panpan Zhang; Geng Ma; Chenyang Wang; Hongfang Lu; Shasha Li; Yingxin Xie; Dongyun Ma; Yunji Zhu; Tiancai Guo
Water management and nitrogen application are critical factors in wheat grain yield and protein quality. This study aimed to evaluate the effect of irrigation and nitrogen application on the grain yield, protein content and amino acid composition of winter wheat. Field experiments were conducted in a split-plot design with three replications in high-yielding land on the North China Plain in 2012/2013, 2013/2014 and 2014/2015. Three irrigation treatments were examined in main plots: no irrigation, irrigation at jointing, and irrigation at jointing plus anthesis, while subplots were assigned to nitrogen treatment at four different rates: 0, 180, 240, 300 kg N ha-1, respectively. The results indicated that irrigation at jointing and at jointing plus anthesis improved grain yield by an average of 12.79 and 18.65% across three cropping seasons, respectively, compared with no irrigation. However, different irrigation treatments had no significant effect on grain protein content in any cropping season. Compared with no N treatment, 180, 240, and 300 kg N ha-1 N application significantly increased grain yield, by 58.66, 61.26 and 63.42% respectively, averaged over three cropping seasons. Grain protein and the total, essential and non-essential amino acid content significantly increased with increasing nitrogen application. Irrigation significantly improved the essential amino acid index (EAAI) and protein-digestibility-corrected amino acid score (PDCAAS) compared with no irrigation; however, N application decreased them by an average of 7.68 and 11.18% across three cropping seasons, respectively. EAAI and PDCAAS were positively correlated, however, they were highly negatively correlated with yield and grain protein content.
Journal of Integrative Agriculture | 2017
Yingxin Xie; Hui Zhang; Yunji Zhu; Li Zhao; Jia-heng Yang; Fei-na Cha; Cao Liu; Chenyang Wang; Tiancai Guo
Abstract Water shortage has threatened sustainable development of agriculture globally as well as in the North China Plain (NCP). Irrigation, as the most effective way to increase food production in dry land, may not be readily available in the situation of drought. One of the alternatives is to supply plants with enough nutrients so that they can be more sustainable to the water stress. The objective of this study was to explore effects of irrigation and sulphur (S) application on water consumption, dry matter accumulation (DMA), and grain yield of winter wheat in NCP. Three irrigation regimes including no irrigation (rainfed, I0) during the whole growth period, once irrigation only at jointing stage (90 mm, I1), and twice respective irrigation at jointing and anthesis stages (90 mm plus 90 mm, I2), and two levels of S application including 0 (S0) and 60 kg ha−1 (S60) were designed in the field experiment in NCP. Results showed that increasing irrigation times significantly increased mean grain yield of wheat by 12.5-23.7% and nitrogen partial factor productivity (NPFP) by 21.2-45.0% in two wheat seasons, but markedly decreased crop water use efficiency (YWUE). Furthermore, S supply 60 kg ha−1 significantly increased mean grain yield, YWUE, IWUE and NPFP by 5.6, 6.1, 23.2, and 5.6% (across two wheat seasons), respectively. However, we also found that role of soil moisture prior to S application was one of important greater factors on improving the absorption and utilization of storage water and nutrients of soil. Thus, water supply is still the most important factor to restrict the growth of wheat in the present case of NCP, supplying 60 kg ha−1 S with once irrigation 90 mm at the jointing stage is a relatively appropriate recommended combination to improve grain yield and WUE of wheat when saving water resources is be considered in irrigated wheat farmlands of NCP.