Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ghassan Chebbo is active.

Publication


Featured researches published by Ghassan Chebbo.


Water Research | 1998

Distribution of pollutant mass vs volume in stormwater discharges and the first flush phenomenon

Jean-Luc Bertrand-Krajewski; Ghassan Chebbo; Agnes Saget

The dimensionless M(V) curves indicating the distribution of pollutant mass vs volume in stormwater discharges are used to compare pollutant discharges from different rainfall events and catchments. The M(V) curves are very variable and dispersed for each pollutant and for a series of rainfall events in a given catchment. From the analysis of 197 rainfall events in 12 separate and combined sewer systems, the following results can be extracted: — in separate sewer systems, 80% of the total pollutant mass is transported in the first 74% of the total volume for 50% of the rainfall events; — in combined sewer systems, 80% of the total pollutant mass is transported in the first 79% of the total volume for 50% of the rainfall events. The characteristics of the M(V) curves depend on the pollutant, the site, the rainfall event and the functioning of the sewer system. No general multi-regression relationships can be established to explain their shape and their variability because of the complexity of the phenomena involved and the multiplicity of influencing factors. A new definition of the first flush is derived from the analysis of the M(V) curves, allowing a non-ambiguous quantification of a phenomenon which, up to now, was presented in a principally descriptive or qualitative manner. It is assumed that there is a significant first flush if at least 80% of the total pollutant mass is transported in the first 30% of the volume discharged during rainfall events. Previous definitions proposed by other authors are discussed with regard to the treatment of stormwater discharges. However, the concept of the first flush can not be used alone to establish a reliable methodology to design treatment facilities. Additional knowledge and information are necessary. From this point of view, the analysis of experimental M(V) curves is appropriate to base a design methodology which takes into account the intrinsic variability of the phenomena.


Water Science and Technology | 1999

Characterisation of urban runoff pollution in Paris

M. C. Gromaire-Mertz; Stéphane Garnaud; A. Gonzalez; Ghassan Chebbo

Runoff was collected from 4 roofs, 3 courtyards and 6 streets on an experimental catchment in central Paris, and analysed for SS, VSS, COD, BOD5, hydrocarbons, heavy metals both as regards dissolved and particle fractions. Whereas street runoff showed important SS, COD and hydrocarbon loads, roof runoff was noticeable for its high concentration of heavy metals. These concentrations in comparison with water quality standards enhance the importance of runoff pollution. The use of sample settling for runoff treatment is discussed on the basis of data concerning the distribution between dissolved and particle bound pollution loads, along with settling velocity measurements. Runoff particles were found to be highly contaminated with heavy metals and hydrocarbons, which raised the problem of sludge disposal.


Water Research | 2012

Priority pollutants in urban stormwater: Part 1 – Case of separate storm sewers

Sally Zgheib; Régis Moilleron; Ghassan Chebbo

Organic and mineral pollutants have become part of todays urban environment. During a rain event, stormwater quality as well as the corresponding contaminant loads is affected by both atmospheric deposition and the various types of impervious surfaces (roads, rooftops, parking lots etc.) on which runoff occurs. This study provides results on stormwater pollution in Paris and its suburbs from three separate storm sewers (n=20 samples). These results show that the stormwater had been contaminated by 55 chemical substances out of the 88 investigated. A particular attention was given to stormwater particle contamination. Concentrations are provided for: metals, PAHs, PCBs, organotins, alkylphenols, phthalates, pesticides, and VOCs. Our findings are among the first available in the literature since the relevant analyses were all conducted on both the particulate (P) and dissolved (D) phases. For most substances, particles from the three storm sewers were more heavily contaminated than dredged sediments and settleable particles from the Seine River. As a consequence of this finding, the release of untreated stormwater discharges may impact the receiving waters and contribute to sediment contamination.


Water Science and Technology | 1996

The first flush in sewer systems

Agnèes Saget; Ghassan Chebbo; Jean-Luc Bertrand-Krajewski

The first flush phenomenon of urban wet weather discharges is presently a controversial subject. Scientists do not agree with its reality, nor with its influences on the size of treatment works. Those disagreements mainly result from the unclear definition of the phenomenon. The objective of this article is first to provide a simple and clear definition of the first flush and then to apply it to real data and to obtain results about its appearance frequency. The data originate from the French database based on the quality of urban wet weather discharges. We use 80 events from 7 separately sewered basins, and 117 events from 7 combined sewered basins. The main result is that the first flush phenomenon is very scarce, anyway too scarce to be used to elaborate a treatment strategy against pollution generated by urban wet weather discharges.


Water Research | 2011

Partition of pollution between dissolved and particulate phases: what about emerging substances in urban stormwater catchments?

Sally Zgheib; Régis Moilleron; M. Saad; Ghassan Chebbo

This paper presents results about the occurrence, the concentrations of urban priority substances on both the dissolved and the particulate phases in stormwater. Samples were collected at the outlet of a dense urban catchment in Paris suburb (2.30 km(2)). 13 chemical groups were investigated including 88 individual substances. Results showed that stormwater discharges contained 45 substances among them some metals, organotins, PAHs, PCBs, alkylphenols, pesticides, phthalates, cholorophenols and one volatile organic compound, i.e. methylene chloride. With respect to the European Water Framework Directive, these substances included 47% of the priority hazardous substances (n = 8), 38% of the priority substances (n = 10). The remaining substances (n = 27) belong to a list of others specific urban substances not included in the Water Framework Directive but monitored during this work. Finally, stormwater quality was evaluated by comparing the substance concentrations to environmental quality standards (EQS) and the particulate content to Canadian sediment quality guidelines. This showed that stormwater was highly contaminated and should be treated before being discharged to receiving waters in order to avoid any adverse impact on the river quality.


Urban Water | 2001

Production and transport of urban wet weather pollution in combined sewer systems: the “Marais” experimental urban catchment in Paris

Ghassan Chebbo; Marie-Christine Gromaire; M. Ahyerre; Stéphane Garnaud

An experimental catchment area was set up in the centre of Paris (France) so as to follow up the quality of wet weather flows from the entry to the exit of a combined sewer network. The distinctive characteristic of this site is its location in a town centre and the extent of the equipment used to monitor the water pollution over the whole length of its course through the catchment area. The results obtained show a change in quality between the runoff entering the sewer network and the combined storm water flow at the sewers outlet, which cannot be explained only by the mixture with domestic wastewater. In particular, an increase was observed in the concentrations of suspended solids (SS), VSS, COD, BOD and Cu, in the proportion of pollutants linked to particles and in the characteristics of the particles. A calculation of the total masses going in and out of the sewer network during a rainfall event shows that the erosion of in-sewer pollution stocks is the main source of particles and of organic matter in wet weather flows, whereas heavy metals loads originated from roof runoff, due to the corrosion of metallic roofs. Particles eroded from the sewer sediments during rain events were found to be quite different from the particles of type A deposits and organic biofilms. Nevertheless, they have mean organic and metallic loads that are of the same order of magnitude as the particles of the organic layer at water sediment interface. A change in the chemical form of heavy metals was noticed during the transport in the sewer and it is suspected that a fraction of the dissolved metals from the runoff is adsorbed on sewer sediments.


Water Air and Soil Pollution | 2004

Hydrocarbons and Metals in Atmospheric Deposition and Roof Runoff in Central Paris

Vincent Rocher; Sam Azimi; Johnny Gasperi; Loïc Beuvin; Mathieu Muller; Régis Moilleron; Ghassan Chebbo

Hydrocarbons (aliphatic and aromatic) and metals (heavy metals and major elements) were measured in both atmospheric deposition and roof runoff in central Paris (France). Atmospheric deposition (wet and dry) was collected from December 2001 to October 2002 and roof runoff was sampled on three buildings with different covering materials, i.e., slate tiles and zinc sheets. This paper gives an overview of the results on the flux and distribution points of view for both atmospheric deposition and roof runoff. Results show that atmospheric fluxes of hydrocarbons and major elements increase during cold seasons, due to residential heating occurrence, while heavy metals, whose major sources have constant emission fluxes, exhibit steady atmospheric loads throughout the year. Moreover, hydrocarbon fingerprints reveal mainly biogenic and pyrolytic origins for aliphatic and aromatic hydrocarbons, respectively. The results about roof runoff contamination suggest that the scavenging processes for hydrocarbons and metals are dependent on rainfall amount rather than on the rain event characteristics (number, intensity, duration), and dry deposition weakly contributes to the pollutant loads in roof runoff. Results also highlight that both metallic and slate roofs do not act as a source of hydrocarbons and major elements—exclusively originating from atmospheric deposition—while they act as a source of some heavy metals. Zinc-covered roofs largely release Zn and Ti, while slate roofs mainly release Pb, Ti and Cu. Whatever the material used for roof covering, roof runoff presents high Ni and V loads due to the vicinity of the chimney stacks of heating boilers.


Environmental Science and Pollution Research | 2014

Micropollutants in urban stormwater: occurrence, concentrations, and atmospheric contributions for a wide range of contaminants in three French catchments

Johnny Gasperi; Christel Sebastian; V. Ruban; M. Delamain; S. Percot; Laure Wiest; Cécile Mirande; Emilie Caupos; D. Demare; M. Diallo Kessoo; M. Saad; Jj Schwartz; P. Dubois; C. Fratta; Hélène Wolff; Régis Moilleron; Ghassan Chebbo; Cécile Cren-Olivé; Maurice Millet; Sylvie Barraud; Marie-Christine Gromaire

This study aimed at: (a) providing information on the occurrence and concentration ranges in urban stormwater for a wide array of pollutants (n = 77); (b) assessing whether despite the differences between various catchments (land use, climatic conditions, etc.), the trends in terms of contamination level are similar; and (c) analyzing the contribution of total atmospheric fallout (TAF) with respect to sources endogenous to this contamination. The studied contaminants include conventional stormwater contaminants (polycyclic aromatic hydrocarbons (PAHs), Zn, Cu, Pb, etc.), in addition to poorly or undocumented pollutants such as nonylphenol and octylphenol ethoxylates (NPnEO and OPnEO), bisphenol A (BPA), polybrominated diphenyl ethers (PBDEs), a wide variety of pesticides, and various metals of relevance (As, Ti, Sr, V). Sampling and analysis were performed using homogeneous methods on three urban catchments with different land use patterns located in three distinct French towns. For many of these pollutants, the results do not allow highlighting a significant difference in stormwater quality at the scale of the three urban catchments considered. Significant differences were, however, observed for several metals (As, Cr, Cu, Ni, Sr and Zn), PAHs, and PBDEs, though this assessment would need to be confirmed by further experiments. The pollutant distributions between dissolved and particulate phases were found to be similar across the three experimental sites, thus suggesting no site dependence. Lastly, the contributions of TAF to stormwater contamination for micropollutants were quite low. This finding held true not only for PAHs, as previously demonstrated in the literature, but also for a broader range of molecules such as BPA, NPnEO, OPnEO, and PBDEs, whose high local production is correlated with the leaching of urban surfaces, buildings, and vehicles.


Water Research | 2012

Priority pollutants in urban stormwater: Part 2 - Case of combined sewers

Johnny Gasperi; Sally Zgheib; Mathieu Cladière; Vincent Rocher; Régis Moilleron; Ghassan Chebbo

This study has evaluated the quality of combined sewer overflows (CSOs) in an urban watershed, such as Paris, by providing accurate data on the occurrence of priority pollutants (PPs) and additional substances, as well as on the significance of their concentrations in comparison with wastewater and stormwater. Of the 88 substances monitored, 49 PPs were detected, with most of these also being frequently encountered in wastewater and stormwater, thus confirming their ubiquity in urban settings. For the majority of organic substances, concentrations range between 0.01 and 1 μgl(-1), while metals tend to display concentrations above 10 μgl(-1). Despite this ubiquity, CSO, wastewater and stormwater feature a number of differences in both their concentration ranges and pollutant patterns. For most hydrophobic organic pollutants and some particulate-bound metals, CSOs exhibit higher concentrations than those found in stormwater and wastewater, due to the contribution of in-sewer deposit erosion. For pesticides and Zn, CSOs have shown concentrations close to those of stormwater, suggesting runoff as the major contributor, while wastewater appears to be the main source of volatile organic compounds. Surprisingly, similar concentration ranges have been found for DEHP and tributyltin compounds in CSOs, wastewater and stormwater. The last section of this article identifies substances for which CSO discharges might constitute a major risk of exceeding Environmental Quality Standards in receiving waters and moreover indicates a significant risk for PAHs, tributyltin compounds and chloroalkanes. The data generated during this survey can subsequently be used to identify PPs of potential significance that merit further investigation.


Water Science and Technology | 2011

Relationship between turbidity and total suspended solids concentration within a combined sewer system.

A. Hannouche; Ghassan Chebbo; G. Ruban; Bruno Tassin; Bruno J. Lemaire; Claude Joannis

This article confirms the existence of a strong linear relationship between turbidity and total suspended solids (TSS) concentration. However, the slope of this relation varies between dry and wet weather conditions, as well as between sites. The effect of this variability on estimating the instantaneous wet weather TSS concentration is assessed on the basis of the size of the calibration dataset used to establish the turbidity - TSS relationship. Results obtained indicate limited variability both between sites and during dry weather, along with a significant inter-event variability. Moreover, turbidity allows an evaluation of TSS concentrations with an acceptable level of accuracy for a reasonable rainfall event sampling campaign effort.

Collaboration


Dive into the Ghassan Chebbo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adèle Bressy

École des ponts ParisTech

View shared research outputs
Top Co-Authors

Avatar

Bruno Tassin

École des ponts ParisTech

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge